Verifying Lock-Free Traversals in Relaxed Memory
Separation Logic

SUNHO PARK, KAIST, Korea
JAEHWANG JUNG?, KAIST, Korea
JANGGUN LEE, KAIST, Korea
JEEHOON KANG, KAIST, Korea

We report the first formal verification of a lock-free list, skiplist, and a skiplist-based priority queue against a
strong specification in relaxed memory consistency (RMC). RMC allows relaxed behaviors in which memory
accesses may be reordered with other operations, posing two significant challenges for the verification of
lock-free traversals. (1) Specification challenge: formulating a specification that is flexible enough to capture
relaxed behaviors, yet simple enough to be easily understood and used. We address this challenge by proposing
the per-key linearizable history specification that enforces a total order of operations for each key that respects
causality, rather than a total order of all operations. (2) Verification challenge: devising verification techniques
for reasoning about the reachability of edges for traversing threads, which can read stale edges due to relaxed
behaviors. We address this challenge by introducing the shadowed-by relation that formalizes the notion of
outdated edges. This relation enables us to establish a total order of edges and thus their associated operations
for each key, required to satisfy the strong specification. All our proofs are mechanized on the iRC11 relaxed
memory separation logic, built on the Iris framework in Rocq.

CCS Concepts: » Theory of computation — Separation logic; Logic and verification; Concurrency.
Additional Key Words and Phrases: separation logic, relaxed memory, reachability

ACM Reference Format:

Sunho Park, Jaehwang Jung, Janggun Lee, and Jeehoon Kang. 2025. Verifying Lock-Free Traversals in Relaxed
Memory Separation Logic. Proc. ACM Program. Lang. 9, PLDI, Article 149 (June 2025), 27 pages. https://doi.
org/10.1145/3729248

1 Introduction

Concurrency libraries exploit relaxed memory consistency (RMC) to minimize expensive synchro-
nizing operations and leave only the ones that are necessary for their correctness. While this helps
achieve higher performance, it makes reasoning about their correctness—which is difficult already
in the strongly synchronized sequentially consistent (SC) memory—even more difficult. The designer
must consider not only all possible interleavings of instructions but also the relaxed behaviors
where the effect of a memory instruction is not immediately visible to other threads.! Even worse,

“Now at Rebellions Inc.

In this work, we focus on the Repaired C11 (RC11) memory model [29], an in-order memory model where the relaxed
behaviors only concern past instructions but not future instructions. Lee et al. [31] show that this is a valid assumption for
programming language semantics.

Authors’ Contact Information: Sunho Park, KAIST, Daejeon, Korea, sunho.park@kaist.ac.kr; Jachwang Jung, KAIST, Daejeon,
Korea, jachwang.jung@kaist.ac.kr; Janggun Lee, KAIST, Daejeon, Korea, janggun.lee@kaist.ac.kr; Jeehoon Kang, KAIST,
Daejeon, Korea, jeehoon kang@kaist.ac kr.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/6-ART149

https://doi.org/10.1145/3729248

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 149. Publication date: June 2025.

HTTPS://ORCID.ORG/0009-0000-5380-1969
HTTPS://ORCID.ORG/0000-0001-6099-2644
HTTPS://ORCID.ORG/0009-0002-0047-7717
HTTPS://ORCID.ORG/0000-0002-2115-0871
https://doi.org/10.1145/3729248
https://doi.org/10.1145/3729248
https://orcid.org/0009-0000-5380-1969
https://orcid.org/0000-0001-6099-2644
https://orcid.org/0009-0002-0047-7717
https://orcid.org/0000-0002-2115-0871
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3729248

149:2 Sunho Park, Jachwang Jung, Janggun Lee, and Jeehoon Kang

function new() — ArraySet function remove(s, k) — bool

L // infinite array with elements initialized to false | return s[k].cas(true, false, acqrel)
return new Atomic<bool>[oo] function contains(s, k) — bool

function add(s, k) — bool | return s[k].load(acq)

| return s[k].cas(false, true, acqrel)

Fig. 1. An implementation of a set of natural numbers based on an infinite array. The “Atomic<..>” type
signifies that the location is shared and mutable. Reading and writing to such locations should be done
explicitly with methods like load() and cas().

formally specifying the libraries and reasoning about their clients becomes a significant challenge
as the relaxed implementations usually expose relaxed behaviors.

Recent advances in separation logic for RMC have made verifying concurrency libraries against
precise specifications more tractable. Early logics such as GPS [53], RSL [54], and FSL [9, 10]
explored modular reasoning principle for C/C++’s RMC model, and they have been incorporated
into the iRC11 logic [7, 8, 23] to leverage the Iris separation logic framework [20, 22, 25]. Dang et al.
[8] introduced several styles of strong library specifications in iRC11. Specifically, their linearizable
history specification for Treiber’s stack [52] explains the stack’s behavior in a familiar style based
on linearizability [17]—the standard specification in SC, while admitting relaxed implementations.
Park et al. [43] proposed a proof recipe for the linearizable history specification, and verified several
concurrent data structures such as stacks, queues, and atomic reference counting.

However, Park et al.’s recipe does not scale to set and map data structures. First, their specifica-
tion cannot describe behaviors that arise in relaxed set and map implementations. Second, their
verification method does not address concurrent traversal—a key ingredient of high-performance
set and map implementations such as skiplists [13, 49], which is known to be particularly difficult
even in SC and thus has been under extensive study until recently [12, 26, 35, 39, 45].

In this paper, we address these two challenges on verifying concurrent traversals in RMC as
follows. We focus on sets for simplicity of presentation, but the same points apply to maps.

Specification challenge. Reasonably relaxed implementations of concurrent set may not satisfy the
linearizable history specification, because the specification requires that there be a total order called
linearization order among all events that satisfies the sequential specification of set, i.e., behaves like
a history of set operations; and preserves causality, i.e., keeps the happens-before order enforced by
prior synchronization. The only relaxed behaviors allowed in this specification are inserting events
into a point in the past in a way that does not violate those conditions. However, we observe that
the linearization specification is too strong for existing concurrent set implementations.

To illustrate this, consider an idealized implementation of the set of natural numbers using
an infinite array of booleans, shown in Fig. 1. Elements are added (resp. removed) by atomically
changing the value of the corresponding array slot from false to true (resp. true to false) using the
compare-and-swap (CAS) operation. The invocations of cas (resp. load) use acqrel (resp. acq) access
modes that are not as strongly synchronized as SC (the precise semantics is introduced in §2).

We first observe that this set implementation (and other more realistic ones) satisfy the lin-
earizable history specification when considering only a single key. Fig. 2a illustrates an example
execution where the left thread T;’s invocation of add(1) precedes the right thread Tg’s invocation
of remove(1) in the wall clock time. However, Tg’s remove may fail, because RMC allows reading a
stale value from a location (the initial false in this case) unless the thread has observed a newer value
written to that location. The blue dotted arrow explains how the linearizable history specification
admits this behavior: the failed remove event reads from the initialization event at which point

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 149. Publication date: June 2025.

Verifying Lock-Free Traversals in Relaxed Memory Separation Logic 149:3

s := new();
true
s := new(); add(s,1); y.\ 2
true l ~‘\ dtdrue
. add(s,2);
add(s,1); .. N // false : (2)
' false remove(s,2); .
“remove(s,1); . // false
“remove(s,1);
(a) A read event can read from a stale write event (b) Non-linearizable execution of set.

as long as they are not synchronized.
Fig. 2. Examples of stale reads in a set.

the set is empty, and is linearized between the initialization event and T;’s successful add event.
The specification allows this behavior despite the inconsistency with the wall clock time because
there is no explicit synchronization that induces causality between them. On the other hand, if Tg
has seen add(1) through an explicit synchronization, then coherence rule of RMC ensures that Ty
cannot see an older value from the location and thus the remove succeeds.

However, for operations on different keys, this set implementation exhibits even more relaxed
behavior that violates the specification. For example, in Fig. 2b, T; adds 1 and tries removing 2,
and symmetrically, Tr adds 2 and tries removing 1. Both threads may fail to remove the elements
as in Fig. 2a, because they are not synchronized, their CAS may read the stale values from each
other’s slot. This inhibits the existence of a total order of events. Without loss of generality, suppose
Tr:add(s,1) comes before Tr:add(s,2), depicted by the arrow labeled a question mark. Similar to
Fig. 2a, the removal of 1 should come before the addition of 1 (blue dotted arrow), and the same for
2 (). By intra-thread causality, the removal of 1 should come after the addition
of 2 (black arrow in the right thread). Thus, the total order has a cycle, which is a contradiction.

The problem here is that the linearizable history specification is overly strong for the relaxed
implementation in Fig. 1. Although the implementation could be modified to satisfy the strong
specification, many realistic implementations, such as Java’s ConcurrentMap [40], often forgo a
total order among events on different keys in favor of better performance. Therefore, it is important
to develop a more relaxed specification style that formalizes such relaxed behaviors.

For libraries without a total order, Raad et al. [46] proposed a flexible specification framework
based on partial orders and consistency conditions specific to each library. For example, their set
specification [46, §C.2] consists of several consistency rules for each key, such as “a value cannot
be added twice before being removed”.? These rules reflect the fact that each key is independent
by default, but at the same time, take account of the causality (“before”) induced by client’s
synchronization. However, this indirect characterization of the behavior forgoes simplicity.

To strike the balance between flexibility and simplicity, we introduce the per-key linearizable
history specification for the set (and map) library, which specifies each key with Dang et al. [8]’s
linearizable history specification. That is, each key in the domain gets a separate linearizable history
of operations that changes the state of the key (i.e,, its existence), and the causality among events on
different keys are separately recorded. This combination adequately captures the nature of relaxed
set implementations without resorting to a complex set of consistency conditions.

For example, in Fig. 2b the behavior discussed above is a parallel composition of histories
represented by the blue dotted arrow for key 1 and for key 2, without causality
between them.

2This is an informal interpretation of the formal condition.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 149. Publication date: June 2025.

149:4 Sunho Park, Jachwang Jung, Janggun Lee, and Jeehoon Kang

head adedop) nodet aded(3) node3 add(4) node4
13 €34
S:=neW() ---- 3| 4'| |
add(s, 1); add(s, 3); add(s, 4); add(s, 2) \ e >
12
/ thread T ead To es % shb
thread T;, / thread Ty e add(2)," > o
remove(s, 1) || remove(s, 3) remove ‘ remove(3)

assert(!contains(s, 3))

Fig. 3. An example program using list-based set and its possible outcome. Each edge is labeled by its name
and the operation that wrote it. The red dashed edges (e, €13, and ey3) are stale values overwritten by the
solid line edges below it (egz, €12, and ey, respectively). The stale edges are only observable in RMC.

Verification challenge. While the array-based set implementation is straightforward to verify
against the per-key linearizable history specification, it is not the case for traversal-based set
implementations such as linked lists and skiplists. Fig. 3 illustrates the challenge with a simple yet
insightful example involving an implementation based on sorted linked list. Here, add inserts a new
node with the given key between the nodes of the adjacent keys, and remove detaches the target
node by making its predecessor point to its successor. Initially, 1, 3, 4, and 2 are added to the set in
that order, and then T; and T concurrently remove 1 and 3, respectively. Tg then asserts 3 is not in
the set, which should succeed if the set satisfies the per-key linearizable history specification.

In SC, verification of traversal-based set implementations is straightforward because the existence
of a key is typically associated with the reachability (from the head of the data structure) of the
node containing the key. For example, in Fig. 3, remove(3) makes node3 unreachable from head by
updating e;3 to ez4. Then the proof proceeds as follows. After remove(3), Tg remembers the fact that
the set does not contain 3. From this fact and the association between set membership and node
reachability, Tg learns that there is no reachable node with key 3. Therefore, it directly follows that
contains(3) does not arrive at a node with key 3 and the assertion succeeds.

This relatively straightforward proof, however, does not work for RMC because threads may read
stale values. To model this possibility, RMC retains all stale values in the memory (red dashed edges
in Fig. 3), implying that all nodes that have ever been inserted into the list remain reachable in terms
of the graph structure. Therefore, we must prove that after observing remove(3), contains(3) cannot
reach node3 in the view of TR—which we call view-unreachable from Tr—even in the presence of
the stale edges. We address this challenge as follows.

First, we note that each set operation on a key is committed® at a memory operation on a
containing edge of the key, which is an edge that determines whether the key is present in the
set from the perspective of the thread that reads it. For example, T;.’s invocation of remove(1) is
committed at the CAS that atomically updates head’s next pointer from the edge e(; to ey, and the
edge ey, contains key 1 as it ensures the absence of the key in the set after the operation. Similarly,
Tr’s invocation of remove(3) is committed at the CAS that atomically updates node2’s next pointer
from ey3 to ez4, which contains key 3 as it ensures the absence of the key.

Second, we observe that the containing edges of each key form a total order that respects causality,
which can be used for deriving the per-key linearization order. This relation between edges, written
e 1% ¢’ and read e is shadowed by €', says that traversing to and observing e’ prevents traversing to
and observing e, hence respecting causality, i.e., the observation of ¢’ cannot happen before that of

e. For an example of totality, e;3 Shb, €3 Shb, e24 holds for key 3 in Fig. 3 as follows. (1) e;3 shb, €3:

3We say that an operation is committed at a memory operation if the operation appears to execute atomically at the memory
operation. The notion of commit is captured in logically atomic Hoare triples in separation logic (see §3 for more detail).

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 149. Publication date: June 2025.

Verifying Lock-Free Traversals in Relaxed Memory Separation Logic 149:5

the observation of ey; prevents taking the path [eg;; e13], regardless of which path the thread took
to reach node2 and observe e,s. If it took [ep;], coherence prevents reading eq;. Otherwise, it took
[eo1; €12] and coherence prevents reading e;3. (2) ez3 Shb, e24: the observation of ey, prevents taking
the paths [egs; e23] and [egs; e12; €23] from the coherence rule at the next pointer field of node2.
(3) e13 <hby eyt similar to (1).

Third, we capture the essence of the reasoning about shadowed-by relation with a set of simple
proof rules that apply to various traversal-based data structures. For example, our proof rules can
derive ej3 shb, e24 in the following steps: (1) in add(2), we get e;3 Shb, e1p and eq3 shb, e23; (2) in
remove(3), we get ey3 shb, e24; (3) by transitivity with (1) and (2), we have e;3 Shb, e94. While the
step (2) is direct from coherence on a single location, justifying the proof rules for steps (1) and (3)
are not easy because they involve multiple locations. The key insight enabling such proof rules is
capturing a common invariant in traversal-based data structures: the observation of a node implies
the observation of the path leading to that node, such that each edge in the path is the edge used
for inserting the node it points to. Such a path, which we call the reference path (e.g., [eo1; €12] for
node2), provides an intersection (e.g., node1) with the undesirable path (e.g., [eo1; €13]) at which we
can use the coherence rule. Thanks to the inductive structure of reference path, we can define the
shadowed-by relation that admits inductive proof rules that follow the structural changes made by
the data structure’s algorithm.

Contributions. Addressing these challenges, we report the first formal verification of a lock-free
list, skiplist, and a skiplist-based priority queue against a strong specification in RMC, and verify a
nontrivial client using the specification of the priority queue. Specifically:

e In §3, we formalize per-key linearizable history specifications for concurrent sets and maps.
We demonstrate the flexibility of these specifications by applying them to more complex data
structures, such as concurrent priority queues.

e In §4, we present the verification technique for traversal-based data structures in RMC using
the lock-free linked list implementations of a set [15, 36] as a running example. We present the
proof rules for the shadowed-by relation and how to derive per-key linearization order from
the shadowed-by order of containing edges.

e In §5, we define the notion of view-reachability that captures the reachability of an edge in the
view of a thread, and the model of the shadowed-by relation that captures how traversing to
one edge affects the view-reachability of another.

o In §6, we sketch the proof of a lock-free skiplist [49] to showcase the wide applicability of our
method. Despite the subtlety of its traversal algorithm, our verification method applies only
with minor adjustments to take account of some additional invariants specific to it.

o In §A [42], we present a proof of a skiplist-based priority queue to demonstrate our method’s
application in a traversal strategy requiring an additional boolean field. The shadowed-by
relation remains sufficient to derive a total order among events, with minor adjustments to
account for the boolean field.

e In the artifact [41], we present all our results mechanized on the iRC11 relaxed memory
separation logic [7] built on the Iris framework [20, 22, 25] in Rocq (formerly Coq). Our Rocq
development consists of: 1,559 lines of code (LOC), excluding empty lines and comments, for
the theory of the shadowed-by relation; 5,362 LOC for the proof of the linked list (§4.2); 7,373
LOC for the proof of the skiplist (§6); 5,444 LOC for the proof of the linked-list-based map; 9,589
LOC for the proof of the skiplist-based priority queue; and 776 LOC for verifying a nontrivial
client using the per-key linearizable history specification of the priority queue.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 149. Publication date: June 2025.

149:6

Sunho Park, Jachwang Jung, Janggun Lee, and Jeehoon Kang

Algorithm 1 The Harris-Michael list with wait-free contains

1: struct Node 21: function add(list: Node*, key: int) — bool
2: | key:int|—oo |0 22: | loop
3: | next: Atomic<Node*> 23: var (preyv, cur) := find(list, key)
24: if (“cur).key = key then return false
4: function find(list: Node™, key: int) 25: var node := new Node {key: key, next: cur}
5: | — (Atomic<Node*>*, Node™) 26: if ("prev).cas(cur, node, acqrel) then
6: | restart: 27: _ L L return true
7: | var prev: Atomic<Node*>" := &(*list).next 28: function remove(list: Node™, key: int) — bool
8: | wvar cur: Node* := ("prev).load(acq) 29: | loop
9: | loop 30: var (prev, cur) := find(list, key)
10: var next := (*cur).next.load(acq) 31: if (“cur).key # key then return false
11 var mark := get_mark(next) 32: var n := unmarked((*cur).next.load(acq))
12: next := unmarked(next) 33: if !(*cur).next.cas(n, marked(n), acqrel) then
13: if mark then 34: L continue
14: if ("prev).cas(cur, next, rel) then 35: | | ("prev).cas(cur, n, rel); return true
15: cur := next; continue 36: function contains(list: Node®, key: int) — bool
16: else goto restart 37: | var cur: Node* := (*list).next.load(acq)
17: else 38: | loop
18: if key < (*cur).key then 39: L if key < (*cur).key then break
19: return (prev, cur) 40: cur := unmarked((*cur).next.load(acq))
20: | | | prev:= &(*cur).next; cur := next 41: | if ("cur).key # key then return false
42: | return !get_mark((*cur).next.load(acq))
head nodel node2 tail m el R ny
| > 1 (e / > 2| e » o |)SHB-OVERWRITE ~
W
(a) Structure (b) Marking n; as logically deleted
n.l 2 > o ny n, n3 N4
i ' o S S s 2L SN e BV 2L BN
£, s V o 7 7
SHB-INSERT \k_/
SHB-OVERWRITER o~ SHB-OVERWRITE SIB-DETACH

(c) Inserting node ns

(d) Physically detaching nodes n; and ns

Fig. 4. Structure and link modifications in lock-free lists. The labeled dashed arrows are discussed in §4.

2

Background

We review lock-free linked lists (§2.1), and semantics (§2.2) and separation logic (§2.3) for RMC.

2.1 Lock-Free Linked Lists

Algorithm 1 presents an implementation of the Harris-Michael list [36], a classic lock-free imple-
mentation of the set data structure based on sorted singly linked list. Fig. 4a illustrates the structure
of the list. Its node consists of a key and a mutable pointer to the next node. The root of the list is a
sentinel node with the key —co. For simplicity of presentation, we assume that there is a sentinel
node at the tail with the key oo, so that the next node of an internal node is always non-null.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 149. Publication date: June 2025.

Verifying Lock-Free Traversals in Relaxed Memory Separation Logic 149:7

The add function first searches for the position of the given key in the list with the find function
(line 23). This returns a tuple (prev, cur) where prev is a pointer to the next field of the last node
whose key is less than the given key; and cur is a pointer to the first node whose key is not less than
key. If cur’s key differs from key, we attempt to insert a new node with key between prev and cur
with a compare-and-swap (CAS) (line 26). If successful, it is the commit point of the add function.
Otherwise, the procedure restarts from the beginning. Fig. 4c shows the result of a successful
insertion.

The remove function starts with find as well. If the key is found, the node containing the key is
first marked as logically deleted (# in the figure). This is done by a CAS on its next node pointer
field, setting the pointer to the same value but marked, i.e., with its least significant bit (LSB) set.t If
successful, the list structure changes as shown in Fig. 4b, and the remove operation is committed at
that point. (As such, Fig. 4a represents the singleton list of key 2.) Then, it tries physically detaching
the marked node (line 35). Note that the CAS requires the expected value to be unmarked. This
ensures that logically deleted nodes are immutable, preventing various erroneous behaviors such
as creating a link from a removed node to a live node, which may cause the live node to get lost.

The find function locates the prev and cur by traversing the list from the head. To achieve lock-
freedom of add and remove, find helps clean up the logically deleted nodes (line 15)—otherwise,
they may end up in an infinite CAS loop failure due to a marked node that has not been cleaned up
by remove yet. There are other traversal strategies. The algorithm by Harris [15] (omitted) identifies
a chain of consecutive marked nodes and detached them at once, as shown in Fig. 4d.”> On the other
hand, the contains function shown here ignores the marked nodes to achieve wait-freedom.

2.2 View-Based Operational Semantics for RMC

We review the basic principles of the view-based operational semantics [7, 23, 24] for the RC11
memory model [29] for C/C++. We refer the readers to Dang [6] for the full details.

The key characteristic of RMC is that it allows reading stale values. To account for possibility
of stale reads, the memory is not just a map from location to a single value, but rather a (finite)
map to a set of messages in each location: M € Mem = Loc fin, 9(Msg). A message contains the
written value and some other data discussed below.

But RMC does not allow reading arbitrarily stale values. Specifically, the coherence rule stipulates
that the accesses to a single location essentially behave like SC. This means that the messages in
the same locations are totally ordered, and a thread that observed a message from a location is not
allowed to read an older message from that location. To model the order of messages, each message
is assigned a numeric timestamp t € Time. That is, Mem = Loc fin, Time Msg. We refer to
the timestamp of a message m as m.time. To model threads’ observations, each thread maintains
a thread view V € View = Loc fin, Time. When a thread with view V reads from a location ¢, a
message m with V(£) < m.time is chosen non-deterministically from M (¢), and the thread view is
updated to include m.time. For writes, the new message is given a fresh timestamp t > V().

For synchronization, threads need to transfer their observation to other threads, or in other
words, establish the happens-before ordering. In Algorithm 1, a thread that inserts a node to the
list should transfer the observation that the node’s key and next fields are initialized (line 25), so
that other threads traversing the list do not see the uninitialized state. The list uses release-acquire
synchronization to achieve this. At line 26, the cas operation with rel mode (implied by acqrel mode)
releases the thread’s observation in the message it writes. At line 10, the load operation with acq

“This step was omitted in Fig. 3 for the sake of simplicity.
5In fact, the Harris-Michael list is a variant of Harris’s algorithm that is made compatible with the manual memory
management method called hazard pointers [36]. Our verification technique applies to both traversal methods.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 149. Publication date: June 2025.

149:8 Sunho Park, Jachwang Jung, Janggun Lee, and Jeehoon Kang

mode acquires the observation released in the message it read. This is modeled by attaching a
view to the message, called message view. A message created by a rel mode write uses the writing
thread’s view as the message view. When reading a message with acq mode, the message’s view
is incorporated into the thread view with the join operation Vi UV, £ £ +— max(V;(£), V2(¢)). A
cas operation with acqrel mode both acquires the view of the previous message and releases the
thread’s view. Operations with rlx (relaxed) mode do not interact with message view.

2.3 Separation Logic for RMC

We review the fundamentals of the iRC11 separation logic [7] for RC11, built upon Iris [20].

The key feature of iRC11 is reasoning about the outcome of memory operations in relation
to what the executing thread has observed so far. To account for thread observations, iRC11’s
propositions are view-dependent and interpreted in the view of the asserting thread. For example,
the seen-view assertion JV says that the current thread’s view is at least V, where the partial order
on views is defined as V] £ V, = V£. Vi (¢) < V,(f). Seen-view assertion is persistent in that it does
not assert some exclusive ownership—it is just a piece of information that keeps holding after being
established. For reasoning about Atomic<..> locations, iRC11 provides the atomic points-to assertion
{ =4t h, which asserts the ownership of location £ with history h € Time fin, Msg. For example, it
is used in conjunction with the seen-view assertion in the proof rule for acquire load (simplified):

{2V % £ >y h} t.load(acq) { v.dm € h. v = m.value = V(£) < m.time = dm.view = £ >, h }

The rule guarantees that the thread reads a message m that does not violate coherence (V(¢) <
m.time), and joins the message view m.view into its thread view (Im.view).

Invariants and the view-at modality. In SC, the standard principle for reasoning about shared
resources is invariants, , which expresses that the proposition I holds at all times. A thread can
temporarily access I while executing a memory instruction as far as it reestablishes I afterward.

In RMC, not every proposition can be turned into an invariant, because an assertion that holds
in a thread’s view does not necessarily hold in another thread’s view. For example, does not
make sense. Therefore, iRC11 invariants requires the contents to be objective, i.e., do not depend
on view. To share a non-objective proposition P via an invariant, we should first turn it into an
objective one by putting it under the view-at modality @y with VA-inTRrO:

(VA-INTRO) (VA-ELIM)
P+ 3V. 3V« @yP JVs«@yPrP

Intuitively, @y P says if the thread view is at least V, then it can obtain P. This is formalized
by the rule VA-gLim, which eliminates the modality when combined with JV. For example, the
release-acquire synchronization via location ¢ can be verified with the invariant of the following
form: ‘ AV. @yt —a {m} * @mviewP ‘ The thread that releases the assertion P uses VA-inTro and
writes the message m with view that includes P’s view, and the reading thread acquires the message
view and uses VA-ELM to strip the view-at modality of P.°

3 Per-Key Linearizable History Specification

Linearizable history specification [8] assumes a total order of events that conflicts with relaxed set
implementations in RMC (§1). To address this problem, we propose a per-key variant of linearizable
history specification, presented in Fig. 5. The Set(#, H) predicate denotes that the location ¢ points
to a set with a collection H of per-key histories. The Key (¢, k, Hy.) predicate asserts that the key k
of the set ¢ has the key history Hj that satisfies linearizable history specification as follows.

%iRC11 provides proof rules for accessing atomic points-to assertions under view-at modality.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 149. Publication date: June 2025.

Verifying Lock-Free Traversals in Relaxed Memory Separation Logic 149:9

Hy € History = Eventld fin, Event Event = (type : EventType, sync : View, eview : g(Eventld))
fin . N >x< N .
Set(¢, H € Key — History) = Key (¢, k, Hy) o € KeyState = Bool X View
k—HieH

(SET-ADD-SPEC)
b.3i,E, V' 2 V. Key(t, k, Hy W {i — E}) = 2V’ =

add(¢, k)| SeenKey(¢,k, My W {i}) *
E = (type : if b then Add else Contains, sync : V', eview : M)

Key (¢, k, Hi) = 3V
* SeenKey (¢, k, M)

(SET-KEY-LINEARIZABLE)

Key(¢, k, H) + 3lin. permutation(dom(Hy), lin) (total order of events)
A interp(Hy, lin, o) (sequential specification)
A (Yiy, ig, Eo. Hi (ip) = E2 A iy € Ez.eview — iy —> ip) (preservation of causality)

oL 0" £ (E.type = Init A o’ = (false, E.sync) A o = g, = (false, 0))
vV 3V.V C Esync A
(E.type = Contains A ¢’ = o = (true, V))
V (E.type = NoContains A ¢’ = o = (false, V))
V (E.type = Add A ¢’ = (true, E.sync) A o = (false, V))
Vv (E.type = Remove A ¢’ = (false, E.sync) A ¢ = (true, V))

interp(Hy, lin, o) 2 lin = [| V 3i,E, lin, 0. He (i) = E A lin = [i] + i’ Ao 5 6’ Ainterp(Hy, lin’, o)

Fig. 5. Per-key linearizable history specification for sets.

Specification for each key. The key history Hy, is a finite map from event id to the contents of the
event. An event consists of three elements: (1) the type of event; (2) the sync view (sync) used for
describing the synchronization induced by the event; and (3) the event view (eview), a set of events
that the executing thread has observed before executing this event, inducing causality.

Each method of the set is given a specification that describes how it generates an event. For
example, SET-ApD-SpEC is the specification for the add method. (Specifications for the other methods
are similar and omitted.) The specification is given in the form of logically atomic Hoare triple
(LATs) [4, 22]. An LAT of the form (P) e (v. Q) is similar to usual Hoare triple {P} e {v. Q}: it says
the program e takes P as precondition, evaluates to v, and yields postcondition Q. In addition, an
LAT asserts that e behaves as if it is atomic. Specifically, it says that e contains an atomic instruction,
called commit point, at which P is transformed to Q. As such, an LAT in SC naturally imply the
linearizability of concurrent objects by choosing the linearization point as the commit point [3].
For the full discussion on LATs, especially in RMC, we refer the reader to Dang et al. [8].

SET-ADD-SPEC takes three preconditions: the Key assertion for the key k being added, the seen-
view assertion, and SeenKey(#, k, My.) that asserts the thread has observed the set of events M
of k. The specification updates those assertions with a new event E with id i and returns them
as postcondition. The type of E is either Add if it successfully added the key, or Contains if the
set already has the key. The event gets event view My, recording the fact that it happens after the
events that the executing thread has observed. Furthermore, event gets a view V’, which is also
incorporated into the thread’s observation, as indicated by the returned seen-view assertion.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 149. Publication date: June 2025.

149:10 Sunho Park, Jachwang Jung, Janggun Lee, and Jeehoon Kang

Keys(¢, H € Key fin, History) = >X< Key (¢, k, H)
k—HpeH

SeenKeys(f, M € Key fin, @ (Eventld)) = * SeenKey(?, k, M)
k—>MeM

(REMOVEMIN-SPEC)
r.3H M,V 2 V. Keys(£, H') = 2V’ = SeenKeys(£, M") =

Y k3i, (H (k), M (k) =

3V Keys(£, H) * (H (k) W {i — (type : NoContains,...)}, M(k) W {i})
SeenKeys(£, M) removeMin(?) if (3k" > k. r = Some(k’)) V r = None
(H (k) @ {i — (type : Delete,...)}, M(k) W {i})
if r = Some(k)
(H(k), M(k)) otherwise

Fig. 6. Specification for priority queues.

The Set-Kev-Linearizasie rule asserts that each key’s history of events is indeed linearizable
as follows. (1) Sequential specification: There is a total order lin of events in H that yields a valid
interpretation of Hy according to the transition relation of key state. A key state o is a tuple (b, V),
where b is a boolean indicating whether the key is in the set, and V is the view that has been
released in this key so far. The transition relation o £, &’ describes how the event E interacts with
the key’s state. For example, an Add event flips b from false to true, acquires the view released so
far, and releases the view of the thread that executed this event. (2) Preservation of causality: The

order preserves the causality enforced by prior synchronization. That is, when a thread has seen
the event i; before it executed the event iy, then i; must come before i, in

Specification for maps. The implementation and specification of maps require only minor ad-
justments to account for the value associated with keys: (1) in the implementation, we add .value
field to each node; and (2) in the specification, we associate the value with each per-key event (e.g.,
Add(v)). The proof strategy discussed in the rest of this paper apply to both set and map.

Specification for complex data structures. The per-key linearizable history specifications offer
sufficient flexibility to support a wide range of complex data structures, as demonstrated below.
First, our specification support data structures with different per-key behaviors. Leveraging
the inherent flexibility of the original linearizable history specification [43], the per-key history
specification retains generality regarding the transition relation (o £, 6%) and event types (e.g.,
Contains). This allows it to be easily adapted to other data structures that require different transition
systems, including those with weaker synchronization (e.g., NoContains does not synchronize with
other events) or maps with a replace operation that updates the value asociated with a given key.
Second, our specification style supports operations involving multiple keys by simultaneously
considering multiple per-key histories. A prime example is the removeMin operation in a priority
queue, which removes and returns the minimal key. The per-key specification in style of Ser-App-
Spec cannot be directly applied to removeMin because determining a key’s minimality requires
examining multiple key histories. To address this, we extend the pre- and post-conditions to consider
multiple key histories, as shown in Fig. 6. Specifically, the specification for removeMin requires
the Key and SeenKey predicates to hold for every key as a pre-condition. Then, the post-condition

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 149. Publication date: June 2025.

Verifying Lock-Free Traversals in Relaxed Memory Separation Logic 149:11

(if a key k is returned) adds a NoContains event to each key k’ < k and a Delete event to key k,
enabling the client to determine the returned key’s minimality by applying SET-KEy-LINEARIZABLE to
each relevant per-key history.

4 Reasoning about Traversal with Shadowing

We develop a method for verifying traversal-based sets against the per-key linearizable history
specification. As outlined in §1, reasoning about causality in traversal-based sets hinges on the
notions of view-reachability and shadowed-by relation. We formalize these concepts (§4.1); and
demonstrate their application to the verification of traversal-based sets, using a lock-free list as a
running example (§4.2).

In this section, we assume that each node of data structures has a single mutable pointer field,
and define an edge as a tuple of the from node, the to node, and the timestamp of the message
corresponding to the edge.” While we focus on lock-free lists, our proof strategy applies to other
traversal-based data structures with minor adaptations (see §6 for the verification of a skiplist).

4.1 The Shadowed-By Relation

(SHB-NO-REVERSE-HB)
shb
eg 2 ey xey > Vox Vo T V% V)~ e + False

V ~» e £ Jp. Path(e.from, p) = Ve’ € (p ++ [e]). V(e’.from) < e’.time (view-reachable)
e — V = @y (SeenRefPath(e.from) * SeenEdge(e)) (view-traversed)

The predicate e; shb, e2,% read e; is shadowed by ey, says that a thread that observed e, cannot
reach e; anymore. The rule sus-no-revERse-HB reflects the intuition behind 2hby Tt involves traversals
to edges e; and ey, where ¢; shb, e2. The premise of the form V ~s e, read e is view-reachable from
V, asserts that it is possible for a thread with view V to traverse from root to e. That is, there is a
path to e.from such that every edge in the path, as well as e itself, can be read without violating
coherence. On the other hand, the premise of the form e > V, called the view-traversed assertion,
says that a thread has traversed to e and observed (read or wrote) e, and the resulting view is V.
Given e; Shb, €5, SHB-NO-REVERSE-HB asserts that if a thread has observed the result of traversal to e,
(e2 ™ V, % V5 £ V1), then it cannot traverse to the shadowed edge e; (V; ~» e + False), or in other
words, e; is unreachable in the thread’s view.

The view-reachable and view-traversed assertions do not require dedicated introduction rules, as
they immediately follow from observations collected during traversal and data structure invariant.
We defer detailed discussion of this point to §4.2, and here we focus on the basic properties of the
shadowed-by relation and the rules for establishing it.

Shadowed-by assertion is persistent (sus-pErsisTENT) and objective (suB-oBJECTIVE), i.e., it is a
piece of knowledge that does not depend on the view of the thread. Additionally, the shadowed-by
relation is irreflexive (suB-1RrEFLEXIVE) and transitive (suB-TransiTIVE). The labeled dashed arrows

"To support multiple pointer fields, we need to add the field name in the tuple to differentiate two edges from different
fields. We omit this in our formalization as it is not required in our case studies.

8In the Rocq development, the predicates and proofs rules are parametrized by the root node nyo0t of the data structure
under verification. We omit this parameter in the paper for the simplicity of the presentation.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 149. Publication date: June 2025.

149:12 Sunho Park, Jachwang Jung, Janggun Lee, and Jeehoon Kang

in Fig. 4 (page 6) illustrates how the proof rules for establishing % hb apply in lock-free lists.
(SHB-PERSISTENT) (SHB-OBJECTIVE) (SHB IRREFLEXIVE)
persistent(e; <hby ey) objective(e; RN <hb, e b False

(SHB-OVERWRITE)
e;.from = ey.from

7l
e;.time < es.time e; 25 ey

(SHB-TRANSITIVE)

sht shb shb
e1 25 ey k ey 2 eg b eg 2 ey

Overwriting. Fig. 4b shows the case when a node n; is marked as logically deleted. This is done
by overwriting its edge e; to the next node n; with the new marked edge e; using a CAS. Clearly,
ez shadows ey, since the write of e, comes after that of e; in n;’s next pointer location history.
SHB-OVERWRITE expresses this property with the timestamp order of e; and e, in the next field of n;.
This rule applies analogously to e; kb, ¢, that arises in Figs. 4c and 4d.

(NEW-LINK-TO-NEW-NODE) (NEW-LINK-TO-EXISTING-NODE)
es.to =ns eto=n
Fresh(ns) $l< ns < [es] ne 8+ [e]) xe 2Lb e $X< n«—i(e++e;e’])

(SHB-INSERT)
(PTB-OBJECTIVE)

ns = es.from o
objective(n < €)

elﬂeg*n3<—|[ez]-|+ I-elﬂ)eg,
Inserting. Fig. 4c shows the insertion of n; between n; and ny, originally connected by e;. ns is
initialized with an edge e5 to n, and then linked to n; with an edge e;. We note that e; shadows e;.
In order for a thread to observe es, it should first observe an edge e targeting node ns. e can be either
the initial edge e, or a new edge added after ns is inserted. As shown throughout Fig. 4, the linked
list algorithm ensures that new edges to ns shadow e,, which in turn shadows e;. By transitivity,
e 2hby ¢ Since the thread has observed e, it cannot reach e; anymore. Therefore, e; Shb, es.

The NEW-LINK-TO-NEW-NODE, NEW-LINK-TO-EXISTING-NODE, and suB-INserT rules provide an abstrac-
tion for this argument. NEw-LINK-TO-NEW-NODE registers a fresh node ns pointed by e; to the graph
and yields a pointed-by-edges assertion ns < [e;], which says that e; is the initial incoming edge
of n3.” (Here, Iris’s “update” connective ék can be understood as implication) In general, the
pointed-by-edges assertion n « € records the list of all incoming edges € of node n ordered by =% shb,
Whenever a new edge to n is created, n’s pointed-by-edges assertion is updated accordingly Wlth
NEW-LINK-TO-EXISTING-NODE. SHB-INSERT then takes n3 < [e;] ++ _ and e, shb, e, as the evidence
that the initial edge of n3 shadows e, and concludes e; Shby es.

(PTB-PERSIST) (PPTB-PERSISTENT) (PTBSNAP-PERSISTENT)
> - . - .
ne«e $x< n—e persistent(n O e) persistent(n o €)
(PTBSNAP-GET) (PTBSNAP-VALID)
N - - - - - s o
n«ievnikierno—e (n—eyVnixie)sno—eyt e =ey+_

(SHB-DETACH)
(PTBSNAP-SHB)

- ey.from = ny
n o— € + sorted(e,

shb)

shb.

e =S exny o (_++[e1]) Fey = Shby

Despite the wording “the initial incoming edge”, this rule does not require e; to be the only edge to n3. Shadowed-by only

guarantees unreachability of registered edges, so it is safe to ignore edges that are not of interest. So, to be precise, the
assertions says e; is the initial among the n3’s incoming edges of interest. An example of ignored edges are shown in §6.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 149. Publication date: June 2025.

Verifying Lock-Free Traversals in Relaxed Memory Separation Logic 149:13

e e TP D
§1 §1 §1 §1

] ()
: A :

A A

! d ;

’ 1’ . 1’

NoContains| /| Contains |
Contains

Fig. 7. An execution result of lock-free linked list set operations and linearizable history of the key 20. Edges
e, ..., g are the containing edges of 20. The edge eq4 is in gray, indicating that it is marked. The total order of
events (red dashed arrows) on the key 20 is derived from the shadowed-by ordering of the containing edges.
The view-reachability relation (~») holds for each event’s prior view, and the view-traversed relation (>)
holds for each event’s sync view.

Detaching. Fig. 4d illustrates an example of the cleanup procedure performed by remove and find
functions, where n; and ns; are detached at once from the linked list. The new edge e shadows the
outgoing edges of the detached nodes, namely e, and es. This is because the linked list algorithm
ensures that no operation creates a new edge to a detached node. In other words, there cannot be a
new path to n, and ns. Therefore, once a thread observes e, it cannot reach n;, (because e; shb, e)
and thus cannot observe e,. Inductively, the thread cannot reach n; and then observe es.

This reasoning is reflected by logical rules. pra-pErsIsT freezes the pointed-by-edges assertion of
the head node of the detached chain into the persistent variant that can no longer be updated with
NEW-LINK-TO-EXISTING-NODE. SHB-DETACH takes this result to transform shadowed-by of its incoming
edge (established by sus-overwriTE) to that of its outgoing edge. Shadowing of the remaining edges
in the detached chain are established similarly from the result of the previous edge.

Pointed-by-edges has another persistent variant n o« €. Unlike n O €, it merely asserts that €
is a snapshot of the prefix of n’s incoming edge list (pTBsNAP-vaLID), and thus does not consume
n <« € on creation (PTBSNAP-GET).

4.2 Proving Per-Key Linearizable History Specification with Shadowed-By Relation

We now turn to verifying the per-key linearizable history specification using the shadowed-by
relation. Fig. 7 demonstrates our proof method on the key 20 of a lock-free list, which is based on
two core invariants of traversal-based sets:

Inv1 The containing edges of a key are totally ordered by the shadowed-by relation.
Inv2 For every edge e, @..viewSeenRefPath(e.to) holds, i.e., reading the edge with acq (incorporat-
ing the message view e.view) ensures that the reference path to e.to is observed.

Ordering the containing edges. We say that a key k is contained in an edge e if e determines the
existence of k in the set. The definition of containing edge is specific to each data structure. For
lock-free lists, e is a containing edge of k iff e.from.key < k < e.to.key: contains(k) returns true
when it reads an edge e such that e is unmarked and e.from.key = k; and false if it reads e with
e.from.key < k < e.to.key or a marked e with e.from.key = k.!° In Fig. 7, the containing edges of
the key 20 are ey, e;, and e4 indicating non-existence of the key, and e; indicating its existence.

0This differs from the simpler list shown in Fig. 3, where containing edge is defined by e.from.key < k < e.to.key.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 149. Publication date: June 2025.

149:14 Sunho Park, Jachwang Jung, Janggun Lee, and Jeehoon Kang

Inv1 states that a newly created containing edge of k shadows the existing containing edges of k,
forming a total order. For example, it is easy to see that e, shby gy by ey S1by ¢4 holds in Fig. 7.
Maintaining the observation of reference path. Inv2 states that each incoming edge of a node n
contains the observation of n’s reference path, i.e., the path from the root to n that only consists of
the edges used for inserting each node (see §5 for the precise definition). We formalize this property
with the predicate SeenRefPath(n), which asserts the observation of n’s reference path.

Inv2 is maintained along the link modifications. For example, in Fig. 4c, we should show
@e,.viewSeenRefPath(ns) and @, view SeenRefPath(ny). For the former, we use the following rule.

(SEENREFPATH-INSERT)
ey.from = ny e,.to = n3

SeenRefPath(n;) * SeenEdge(ez) * n3 o= [ez] + SeenRefPath(ns)

The rule simply says that the observation for the inserted node ns is just addition of the observation
for the predecessor n; and the initial incoming edge (SeenEdge(e;)), which closely follows the
definition of reference path. The rule is applied at the view e;.view (which is included in the view
of the thread that wrote the edge e;), obtaining the desired result. For the latter, we establish it by
taking @e, viewSeenRefPath(n;) from e; and raising its view to es.view.

Tracking the relation between events and edges. We track the committing edge of each operation,
i.e., the containing edge that each operation read or wrote to commit its event. The right side of
Fig. 7 shows the association between events on the key 20 and the committing edges. The new
function commits Init event with the initial edge e; between the sentinel nodes; the successful
invocation of add(20) commits the Add event with the edge e; it wrote at line 26 (Algorithm 1);
contains(20) reads the edge es at line 42 and commits Contains event; and so on. The events are
grouped by the committing edges. Since we are tracking this association for each key, an edge may
have empty set of events on that key. For example, e, does not have events for 20, but it would have
an Add event for 10 (not shown here).

For each event and its committing edge, we maintain the view-reachable and view-traversed
assertions in preparation for applying sus-no-rREVERSE-HB in the next step. For an event E and its
committing edge e, the edge is view-reachable from the prior view VP " of the event: VPH" s e.
The prior view of an event is defined as a join of the sync view of each event that the thread has
observed before it started operation, i.e., VP = | |;p oview Hk (i).sync where Hy is a key history
at the beginning of operation. The proof of view-reachability is done by applying the proof rule for
the load method (§2.3) applied at each traversal step, collecting the evidence that each load did not
violate coherence.

On the other hand, the view-traversed assertion is established for the sync view of the event:
e > E.sync. This assertion says that E.sync has seen both the reference path to the committing
edge (from Inv2) and the edge itself (as the event either read or wrote the edge).

Deriving total order of per-key events. Finally, we derive a total order of events on each key that
respects the causality induced by prior synchronization in two steps. (1) We order event groups (each
consisting of the events that commit with the same edge) according to the shadowed-by relation of
their committing edges (red dashed arrows between shaded areas in Fig. 7). (2) Within each event
group, we order the events by the wall-clock order of the commit point (red dashed arrows inside
the shaded areas). Then the constructed total order respects causality because happens-before order
never opposes the shadowed-by relation (suB-No-rREVERSE-HB); or the wall-clock order.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 149. Publication date: June 2025.

Verifying Lock-Free Traversals in Relaxed Memory Separation Logic 149:15

Nroot Vp1 n
int
RSN N
e A
" ' 1 0 RS >
< €1
Seen p, time
eé lshb
N RSN e,
Ll

Fig. 8. A visualization of the intuition of shb,

Nroot

shb ?
€1 =0 €y =

dp,. SeenPath(ey.from, py) *

¥p1. Path(e;.from, p1) = Jniyy, €], €.

intersect(p; ++ [e1], p2 + [e2], nint, €], €5) A

e;.time < ej.time

Fig. 9. A wrong, naive encoding of the intuition. The figure at right shows that the discrepancy of p, is
problematic.

5 Model of Shadowed-By Relation
shb

Fig. 8 visualizes the intuition behind the shadowed-by relation e; — e,. In a nutshell, if a thread
has observed e; through a path p, from the root node n,0t (hereafter we assume that a path starts
from nyo0t unless mentioned otherwise), then whenever it traverses towards e; through a path py, it
always ends up encountering an intersection node njy of p; and p, that diverts the traversal away
from e, preventing the thread from reading e;. Specifically, at njy;, the edge e] € p is older than
the edge e, € p,. i.e, ¢].time < ej.time.

In this section, we develop the formal definition of the shadowed-by relation that suitably
captures this intuition and enjoys the properties in §4.1. We start with a naive encoding of the
intuition which fails to satisfy some desirable properties, and address the problems with the notion
of fixed reference path to e, that is the oldest among all paths to e;.

A wrong definition. Suppose we use the definition shown in Fig. 9 where we pick as p, the path
that a thread actually followed to reach e,, and assert the existence of the desired intersection for
all p;. At first glance, this definition seems to satisfy the shadowing rules in Fig. 4. However, it is
not suitable for stating data structure invariants, because shb, may or may not hold depending on
P2 despite that the graph structure is identical (thus not satisfying sus-osjective). Consider the list
structure shown at the right of Fig. 9, where a node n; is first inserted and then another node n,
with a smaller key is inserted. If a thread has observed e;, then it must have followed either the
path p; that goes directly to ny or p; that goes through n,. If the thread followed p;, it can still read
e1, so e; is not shadowed by e,. But on the other hand, if it followed py, it cannot read e; anymore,
and thus e; is shadowed by e,.

A fixed reference path. To prevent such a discrepancy, we should use a fixed reference path for p,
that everyone can agree on. Specifically, if a thread has observed e;.from, then it must also have

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 149. Publication date: June 2025.

149:16 Sunho Park, Jachwang Jung, Janggun Lee, and Jeehoon Kang

/i

~— e .
n &
1) /V le
ng

Fig. 10. An example that shows that using inserting thread’s path as the reference is problematic. n;’s
inserting path is p,, and ny’s is ps.

e shb e A

Ap,. RefPath(e;.from, py) *
Vp1. Path(e;.from, p;) - Tniyy, €], €5.
O intersect(p; ++ [e1], pa ++ [ez], nint €], €5) A
e;.time < ej.time
RefPath(n, p) 2 OldestPath(noot, 11, p)
OldestPath(ny, ny, []) = ny = ny
OldestPath(ny, ny, e : €) £ n; = e.from A e.to o— [e] * OldestPath(e.from, ny, €)
Path(n, p) £ Path’(nyot 1, p)
Path’(ny, ny, []) 2 ny = ny
Path’(ny,ny, e :: €) £ ny = e.from A e.to o= (_ ++ [e]) * Path’(e.to, ny, €)
intersect(py, py, Nint, €1, €5) = iy, iz. p1i1] = €] A p3liz] = €} A Rine = €].from = ej.from
SeenRefPath(n) £ Jp. RefPath(n, p) * Ve € p. SeenEdge(e)
SeenEdge(e) £ AV. IV « V(e.from) > e.time

Fig. 11. The correct definition of hb,

acquired the observation of the reference path. (This corresponds to Inv2.) By using the observation
of the reference path, we can still apply the intuition of shadowing as before.

A seemingly natural choice for the reference path would be the path of the thread who inserted
ez.from to the list, because its knowledge of p, acquired along the traversal is released in the edge
to e;.from. However, this definition with the inserting thread’s path allows too many pairs of edges
to be related by shadowing, breaking transitivity. For example, consider the following scenario in
Fig. 10. Node n; is inserted by a thread who followed p, that goes through the marked edge from ns,
and ny is inserted by another thread who followed p4. Note that e, shb, ez holds because at ns, p;
takes the newer edge than e;. Additionally, e; shb, e4 holds because e4 is newer than e;. However,
er 5 e, does not hold, because P4 is older than the edge from nye0 to ns. The transitivity is broken

either due to e; <% e, or e, 25 e,. Since e, 2% e, must be correct to satisfy sHB-OVERWRITE, the

culprit must be e, shb, ez. Therefore, we need to strengthen the definition to prevent e; shb, es.

The oldest path for the reference. The key idea for ruling out such redundant shadowing is to
use the oldest path to e,.from. The oldest path consists only of the initial incoming edge of each

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 149. Publication date: June 2025.

Verifying Lock-Free Traversals in Relaxed Memory Separation Logic 149:17

ni Nz 123

€1
[= e

123 nl, |shb
e A
ishb lshb
es es

(a) n1z =" ns (b) nz3 —* n1p
Fig. 12. Proof of SHB-INSERT Fig. 13. Cases in the proof of SHB-TRANSITIVE

node in the path. In Fig. 10, among 3 paths to ny, p4 is the oldest edge. If we use this path as the
reference path to n;, no edge in any path to n; can ever be shadowed by e, (and any other edges
from n,), rightfully ruling out e; Shby ey,

Formalizing this intuition, the correct definition in Fig. 11 asserts the existence of the reference
path p, that satisfies RefPath(e,.from, p,), where RefPath(n, p) is defined as OldestPath (o, 1, p).
Here, OldestPath(ny, ny, p) is an inductively defined predicate that asserts each edge e in the path
p from n; to ny is the initial incoming edge of e.to, using the snapshot of pointed-by-edge predicate.
From this definition, it follows that an oldest path is uniquely defined, and that a subpath of an
oldest path is also an oldest path, which does not hold for the inserting path:

(OLDESTPATH-UNIQUE)

OldestPath(ny, ny, p) = OldestPath(ny, ny, p’) F p = p’

(OLDESTPATH-CONCAT)
OldestPath(ny, ny, p12) * OldestPath(ng, ns, p23) F OldestPath(ny, ns, p12 ++ pas)

The “for any path p; to e;.from, ...” part in the definition of e, shby ey is wrapped in the

persistence modality “0” to ensure that it is persistent. The Path predicate is defined similarly to
OldestPath, except that it can take arbitrary edges. The definition of intersection (intersect) is as
expected, but it also takes account of the paths that arrive at the same destination. Furthermore,
we define the SeenRefPath(n) as the observation of each edge in the reference path.

We now prove the proof rules for the shadowed-by relation. Rules suB-PERSISTENT, SHB-OBJECTIVE,
SHB-IRREFLEXIVE, and sHB-oVERWRITE are direct consequences of the definition. The properties of the
pointed-by-edges follow from the properties of the authoritative PCM [22] of append-only lists
and its invariant that the incoming edges are sorted by shb,,

Proof of sus-No-reverse-mB. Let p; be the path taken from V; ~» e;. Feed p; into the definition
of e, b ¢, (as p1). This gives edges e] and e; on the intersection node (e].from = e;.from)
with the reference path to e; such that ef.time < e;.time. But we have e).time < Vy(e;.from) <

Vi(ejy.from) < e].time, where each inequality is from e; >~ V5, V, C V;, and V; ~w e;. Contradiction.

Proof of sus-insert (Fig. 12). Let p; be any path to e;.from, and p, be the reference (i.e., the oldest)
path to e;.from. e; = e, gives an intersection node of p; and p, where the edge towards p; is
newer. By the assumption es.from « [e;] ++ _, ey is the initial incoming edge. Therefore, p, + [e;]
is the reference path to es.from, and the aforementioned intersection establishes e, shb, es.

Proof of sus-Transitive. Let p; be any path to e;.from, and p; and ps be the reference path to e,
and es, respectively. Let n, (resp. ny3) be the intersection node between p; and p;, (resp. p, and ps)
obtained from e; Shb, ey (resp. e; shb, e3). We do a case analysis on the order of ny, and ny3 in p,.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 149. Publication date: June 2025.

149:18 Sunho Park, Jachwang Jung, Janggun Lee, and Jeehoon Kang

......... p2
€ o ..I..' s
7> e %
hb Y
n1 s / n
p sh&
P e A -
(a) €1 is the last edge in p,. (b) €1 is not the last edge in p,.

Fig. 14. Cases in the proof of sHB-DETACH

® nyy —* ny3 (Fig. 12a). The path nyoor —* ny2 —* nz3 —* es.from is a concatenation of a subpath
of p, and ps, so it is the oldest path to es;.from by oLpesTPATH-CONCAT. N7 is an intersection of
p1 and es.from where the edge towards the latter is newer. Therefore, e; Shb, es.

e ny3 —F nyy (Fig. 12b). Feed the path nyoot —* n12 =% es.from into the definition of e, Shby .
This gives an intersection node n;, where the edge towards p; is newer than the edge in

. . . . ht
nj, —" nyy. Since n,, is also an intersection between p; and ps, e; = e; holds.

Proof of sus-pETACH. Let p, be any path to e;.from, and p be the reference path to e.from. Let e’ be
the last edge in p,. We proceed by a case analysis on e’:

o ¢’ = ¢ (Fig. 14a). In other words, 3p;. p, = p; ++ [e1], where p; is a path to e;.from. Feed p;
into e; < e to get the intersection of p; and p. This intersection is also an intersection of p,
and p that witnesses e, Dby .

o ¢/ # e (Fig. 14b). From Path(ny, p;), we obtain ny o~ (_ ++ [¢’]). From the assumption
n, o (_ ++ [e1]), presnap-vaLp, and presNap-sus, we have ¢ <25 e;. By the assumption
e1 225 ¢, and sus-TransiTIVE, € <5 e. Since the prefix of p, with ¢’ removed is a path to

. . . . L . . shb
¢’.from, we can obtain an intersection with p. This intersection witnesses e; ~> e as well.

6 Verification of Lock-Free Skiplist

We showcase the wide applicability of the shadowed-by relation by verifying a lock-free skiplist [13,
49] whose nodes have multiple mutable pointer fields, one for each level. We review the algorithm
and its peculiarity regarding the reachability of nodes, and explain how to use the shadowed-by
relation in conjunction with additional invariants to account for skiplist’s traversal algorithm.

Algorithm. Fig. 15 illustrates a lock-free skiplist due to Shavit et al. [49]. The skiplist consists of
multiple lock-free sorted linked lists from level 0 to H (exclusive). Each node consists of a key k,
and a list of next pointer fields from level 0 to h (h < H, with h chosen randomly). The bottom (0th)
level list is the main list that contains all the nodes. The upper levels serve as shortcuts, containing
a subset of the nodes. This means that the containing edge of a key is on the main list (level 0).
Skiplist maintains two sentinel nodes with height H and keys —co and oo, respectively.

The skiplist implements the set similarly to the Harris-Michael list (Algorithm 1). We briefly
walk through each method and discuss their interesting properties. In particular, the commit points
are at the sub-operations on the main list on the bottom level.

find This internal method traverses the skiplist to find a key k and locates edges on all levels where
insert and delete can happen. As illustrated in Fig. 15, it starts from the leftmost node at the
uppermost level. For each level, it traverses the list until arriving at a node with key kK’ > k.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 149. Publication date: June 2025.

Verifying Lock-Free Traversals in Relaxed Memory Separation Logic 149:19

L3 z >
L2 v > v > Nroot
................ : / Ll .~~~ » >
L1 >\ o— 3 7/
: > LO| el AR e
: S ! 2
Lo NE AN AN \ 4
0 0ood - s‘ €1 ey II
—00 10 20 o0 S l*hb g

Fig. 15. 4-level lock-free skiplist with keys 10 and 20. Or-

ange dotted line indicates the path taken during a traversal Fig. 16. e; 5 ¢ does not hold because of €.
finding 20. Edges with check mark (v') are the ones that

are read during the traversal.

Whenever it finds a marked edge during the traversal, it tries detaching the node. If it fails,
it restarts the traversal from the beginning. After finishing the traversal at one level, it goes
downstairs, continuing the traversal from the current node.

add Addition of a new node occurs from bottom to top. It first finds the position to insert, then
inserts a new node into the bottom level. If successful, this is the commit point of an Add event.
Then it proceeds to insert the node at the upper levels.

remove Removal of a node occurs from top to bottom. It first finds the node to remove, and then
marks its next pointer fields from the uppermost level. Successful marking of the bottom level
is the commit point of a Remove event. Then it calls find again to detach the marked node.

contains It traverses the skiplist similarly to find, but does not detach any node to ensure wait-
freedom. The commit point comes from the traversal on the main list.

While based on lock-free linked list, skiplist is unique in that the correctness of its traversal
not only depends on the reachability of nodes, but also on the top-to-bottom order of intra-node
traversal (find and contains) and the top-to-bottom of order of edge marking (remove).

For example, Fig. 16 illustrates a scenario where one thread T; is suspended just after inserting
the node n on the 0th level (e;); meanwhile, another thread T, marked the node as logically deleted
(e2 and e3); and T; is detaching the node on the 0th level (e). To prove the per-key linearizable
history specification, we should show that observing e prevents reading the unmarked edge that e,
overwrote (not shown). In proving lock-free list, we derived this from the fact that e shadows e;
and the unmarked edge. However, e, kb, ¢ does not actually hold in skiplist, because the list of n’s
incoming edges is not frozen and thus sus-peracu does not apply. Specifically, in the case Ty wakes
up and installs an edge e] to n on the 1st level, a thread that observed e can still get to n via e].

Despite that, skiplist’s traversal strategy does prevent reading e; even if it followed e]. This is
because e;.view contains the observation of e;, (since remove marks node from top to bottom), and
e.view contains the observation of e,. So if the traversing thread has observed e, then it should also
have observed e;. This makes the thread either detach n (in find) or ignore n (in contains).

Verification. Despite the peculiarity of skiplist, our proof strategy still largely applies. Specifically,
we observe that containing edges are totally ordered by the restriction of the shadowed-by relation
to level 0 edges (i.e., ignoring the upper level edges; see §4.1, page 12). Combined with some
intra-node invariant that captures top-to-bottom marking property, we can rule out traversals that
are inconsistent with causality and prove the linearizable history specification.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 149. Publication date: June 2025.

149:20 Sunho Park, Jachwang Jung, Janggun Lee, and Jeehoon Kang

- \\‘ n;) PR »
pi . N bi >e >
-7 ._Tl) o (5] - e o ep =
shb hb
2 l ls shb
— ._3_2)
(a) Intersection between p; and p; is on p; (b) Intersection between p; and p; is on p;

Fig. 17. Cases in the proof of unreachability of e, in skiplist. All paths except the dashed ones are on level 0.

Our proof proceeds as follows. Let e; and e; be level-0 edges such that e; shby e, holds among
the level-0 edges. We want to show that if a thread has observed e, then it cannot read e; anymore.
Towards contradiction, suppose the thread arrived at level 0 on node n; and read the path p; ending
with e;. Let e; be the first edge in p;, and p; be the reference path to n;. Fig. 17 illustrates two
possible cases for the location of the intersection node between p; and the reference path p, to
ey. If the intersection is on p; (Fig. 17a), then the thread traversed p;, which allows us to derive
contradiction similarly to the proof of suB-No-REVERSE-HB.

If the intersection is on p; (Fig. 17b) this argument no longer applies as the thread did not actually
traverse p;. Instead, we find another edge e; on p, such that e; is another containing edge of n;.key.
It is clear that e; 25 ¢ 7 holds (from Inv1). Similarly to the lock-free list, the following three points
holds in skiplist: (1) e; contains the observation of e; (from Inv2); and (2) e; contains the observation
of the level 0 marked edge coming out of n;, which we call e; (3) e; contains the observation of
the level 0 unmarked edges coming out of n;. In addition, the marking process of remove function
guarantees that (4) e; contains the observation of all the marked edges in the upper levels of n;. If
e; # e, (1-3) imply that the thread must have read e; instead of ¢;. If e; = e;, (4) implies that the
thread must have read a marked edge at an upper level of n; and thus not stepped down to level 0.

7 Related and Future Work

Linearizability of contains in SC. Formal verification of linearizability of traversal-based search
structures in SC has been extensively studied. One of the key challenges is that the contains method
exhibits an external linearization point. A linearizability proof is usually done by identifying a point
in the execution of the operation where the effect of the operation appears to take effect. Typically,
the linearization point is an instruction in the operation, e.g., successful CAS in add of list-based
set. However, the linearization point of highly concurrent contains appears to be executed by a
concurrently running (external) operations, which requires complex and unintuitive arguments.
This has led to several proof techniques such as hindsight theory and prophecy variables.
The hindsight method [12, 35, 39] establishes the lemma of the form “if there existed a past
state that satisfied property p and the current state satisfies g, then there must have existed an
intermediate state that satisfied 0” [35]. For contains, this lemma tells us whether the item was in
the set at that intermediate state. Internally, hindsight reasoning works by recording the history of
state and maintaining the invariant on how the state may evolve. On the other hand, prophecy
variables [21, 30] help establish the linearization point directly in that method by providing the
means to scrutinize the future state. Patel et al. [44, 45] encoded the hindsight reasoning with
prophecy variable in Iris to verify log-structured merge (LSM) tree and lock-free skiplist.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 149. Publication date: June 2025.

Verifying Lock-Free Traversals in Relaxed Memory Separation Logic 149:21

We believe that these proof techniques are not very useful for relaxed data structure implementa-
tions in RMC as they do not satisfy linearizability and their specification should track the history of
all operations. As such, the commit point of read events can be chosen relatively freely. For example,
a prover verifing a linearizable history specification [8, 43] can effectively defer committing a new
read event and instead place it earlier in the linearization order.

Reasoning about graph structures in SC. Xiong et al. [55] verified a lock-free skiplist. However,
they did not prove the contains function that has an external linearization point, which would
involve with reasoning about the data structure’s complex graph structure.

A prominent proof technique for search structures in SC is the edgeset framework [48], which
provides a uniform method for describing search structures as a graph with each edge labeled with
its edgeset. An edgeset of an edge e is the set of keys such that a search for the key that arrived
at e.from will proceed to e.to. The set of keys that the node is responsible for, called keyset, can
be derived from the edgesets of its incoming and outgoing edges. The uniform abstraction of the
edgeset framework applies to various data structures such as linked lists and trees. This facilitates
proof reuse and automation [26, 45]. Proofs based on the edgeset framework often additionally
utilize the flow framework [27, 28], which enhances separation logics with local reasoning rules
for the graph properties defined with the edgeset framework.

However, the edgeset framework is not directly applicable to RMC, because it is based on the
assumption that distinct nodes have disjoint keysets. But RMC retains stale values, which lead to
multiple copies of the same key reachable from the root. Because of this, the keyset of a node is
not well-defined. Our solution to this problem is to focus on the edges, properties of which are
persistent. Specifically, we observe that the total order of events on each key can be derived from
the shadowed-by relation of the edges that contain the key.

Patel et al. [44] faced a similar problem in verification of multi-copy data structure such as
LSM trees in SC. To overcome this problem, they used logical timestamps to order the nodes
that contain the same key, which is analogous to our strategy of ordering containing edges of a
key by shadowing. However, shadowing is more general, handling higher degree of irregularity.
(1) Crucially, there is no globally agreed total order of events in RMC, which prohibits the use of
a single logical timestamp for ordering nodes. (2) Patel et al. assume that a stale copy of a key is
farther from the root than a newer copy, which makes search for a key identical to single-copy
data structure. This does not necessarily hold for stale copies in RMC. (3) Traversal to the same
key may take different path non-deterministically in RMC.

Madiot and Pottier [32] introduced the pointed-by assertion for reasoning about reachability and
heap space usage under garbage collection in separation logic in SC. This assertion is also used by
Jung et al. [18] to specify the read-copy-update (RCU) [33] memory management algorithm in SC.
The assertion differs from our pointed-by-edges assertion (§4.1) in that ours itself does not assert
unreachability—it just records history of all incoming edges. Also, our assertion, together with the
shadowed-by relation, provides the foundation for reasoning about view-reachability in RMC.

Verification of traversal in RMC. Tassarotti et al. [51] made a significant contribution to reasoning
about traversals in RMC by verifying single-writer linked list under RCU memory management.
The list supports non-blocking read operations. But the single-writer assumption makes the linked
list algorithm they verified significantly simpler than what we verified in this work. Also, they only
verified the memory safety of read operations: they do not specify what value the read operations
will end up reading. We believe this is partly because there was no mature methodology for giving
strong specification to RMC libraries at the time of publication. There have been several works on
strong specification in RMC since then [2, 5, 8, 46, 50]. However, to our knowledge, we are the first
to verify non-blocking search structures against a strong specification under RMC.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 149. Publication date: June 2025.

149:22 Sunho Park, Jachwang Jung, Janggun Lee, and Jeehoon Kang

Gammie et al. [14] verified a concurrent tracing garbage collector (GC) under the x86-TSO
memory model [47], which is a stronger (less relaxed) than the RC11 [29] model we assume in this
work. Verifying GC involves reasoning about reachability of objects, which in general becomes
more difficult under RMC as we observe in this work. However, reachability in x86-TSO is simpler
since the model is essentially an SC heap plus per-thread store buffers, which simply needs to
be added to the set of roots. Furthermore, important GC operations are done with CAS, which is
totally ordered across all threads in x86-TSO and thus limits relaxed behaviors. On the other hand,
in (view-based) RC11, we need to consider all stale edges and rule out the edges that are sufficiently
stale in the perspective of each thread.

Verification of data structures in RMC. Verification of data structures other than sets and maps
has been explored in prior research. Dang et al. 7] developed iRC11 and verified Rust’s atomic
reference counting (Arc) library. Mével and Jourdan [34] pioneered the use of logical atomicity
in RMC, verifying a concurrent bounded queue. Dang et al. [8] expanded upon these works by
refining specifications and verifying concurrent stacks, queues, and exchangers. Park et al. [43]
leveraged proof automation to enhance the scalability of verification.

Our specification and verification techniques are specifically designed for data structures with
lock-free traversals. As such, for data structures that do not involve lock-free traversals, our per-
key specification introduces unnecessary complexities to relate multiple keys (§3). For these data
structures, prior work already provides adequate solutions.

Recent work verifying the RCU concurrent reclamation algorithm [19] highlights the effectiveness
of our per-key specification for complex client verification. This work verifies an internal data
structure called a slot bag, a collection of slots each holding a memory address that will be deallocated.
The specification of the slot bag closely resembles our per-key linearizable history specification,
where the slot index acts as the key. Reasoning with this specification, combined with complex
synchronization analysis provided by SC fences, is a key part of the verification of RCU, as the slot
bag’s operations are pivotal for determining the safety of memory reclamations.

Future work. We formalized the shadowed-by relation, a key primitive for reasoning about reach-
ability in RMC, and demonstrated its utility by verifying lock-free search structures. We believe our
work lays the groundwork for further development. (1) We believe the shadowed-by relation can
be used to verify other types of concurrent search structures such as trees. (2) We aim to explore
adapting the edgeset and flow frameworks to RMC for systematic proof construction and reuse.
(3) We intend to investigate proof automation techniques within Rocq, such as Diaframe [37, 38] to
enhance the scalability of verification. Specifically, Rocq’s interactive proof checking performance
and the repetitive discharge of side conditions were major bottlenecks in our verification.

We envision that our work paves the way for verifying real-world implementations of concurrent
search structures, such as Java’s ConcurrentMap [40], and subsequently real-world software. We
anticipate that the core theories of the shadowed-by relation and view-reachability can be readily
applied with minor adjustments to the definition of containing edges to match the data structure.
However, we expect the following additional challenges. (1) Cyclic data structures: Some data
structures, such as doubly linked lists or certain binary search trees [1, 11], track not only the
successor but also the predecessor of each node. This introduces cycles in the graph, which are
currently not considered in the theory of the shadowed-by relation. (2) Atomics with SC orderings:
Many real-world concurrent data structure implementations for C/C++ rely on the SC access
mode for atomics. Although the shadowed-by relation does not depend on the memory ordering
of atomic instructions, current program logics for the C11 memory model, including GPS [53],
RSL [54], FSL [9, 10], and iRC11 [7, 8, 23], do not fully support atomic accesses with mixed orderings,
particularly when SC accesses are used alongside release-acquire or relaxed accesses.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 149. Publication date: June 2025.

Verifying Lock-Free Traversals in Relaxed Memory Separation Logic 149:23

Acknowledgments

We thank anonymous reviewers for their valuable feedback. This work was supported by: (1) the Na-

tional Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT)(RS-2024-00347786,
80%); (2) the Institute of Information & Communications Technology Planning & Evaluation (II'TP)

under the Graduate School of Artificial Intelligence Semiconductor(II'TP-2025-RS-2023-00256472,

10%) grant funded by the Korea government(MSIT); and (3) the Institute of Information & Commu-
nications Technology Planning & Evaluation(IITP)-ITRC(Information Technology Research Center)

grant funded by the Korea government(MSIT)(IITP-2025-RS-2020-11201795, 10%).

References

[1] Kapil Kumar Attinagaramu and Praveen Alapati. 2024. CAA: A Concurrent AA Tree via Logical ordering. In 2024 23rd
International Symposium on Parallel and Distributed Computing (ISPDC). 1-8. do0i:10.1109/ISPDC62236.2024.10705402
[2] Mark Batty, Mike Dodds, and Alexey Gotsman. 2013. Library abstraction for C/C++ concurrency. In The 40th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’13, Rome, Italy - January 23 - 25,
2013. ACM, 235-248. do0i:10.1145/2429069.2429099
[3] Lars Birkedal, Thomas Dinsdale-Young, Armaél Guéneau, Guilhem Jaber, Kasper Svendsen, and Nikos Tzevelekos.
2021. Theorems for free from separation logic specifications. PACMPL 5, ICFP (2021), 1-29. doi:10.1145/3473586
[4] Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. 2014. TaDA: A Logic for Time and Data
Abstraction. In ECOOP (LNCS, Vol. 8586). 207-231. doi:10.1007/978-3-662-44202-9_9
[5] Sadegh Dalvandi and Brijesh Dongol. 2021. Verifying C11-Style Weak Memory Libraries via Refinement. CoRR
abs/2108.06944 (2021). arXiv:2108.06944 https://arxiv.org/abs/2108.06944
[6] Hoang Hai Dang. 2024. Scaling up relaxed memory verification with separation logics. doi:10.22028/D291-43142
[7] Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer. 2020. RustBelt Meets Relaxed Memory.
PACMPL 4, POPL, Article 34 (2020). doi:10.1145/3371102
[8] Hoang-Hai Dang, Jaehwang Jung, Jaemin Choi, Duc-Than Nguyen, William Mansky, Jeehoon Kang, and Derek Dreyer.
2022. Compass: Strong and Compositional Library Specifications in Relaxed Memory Separation Logic. In PLDL
792-808. doi:10.1145/3519939.3523451
[9] Marko Doko and Viktor Vafeiadis. 2016. A Program Logic for C11 Memory Fences. In VMCAI (LNCS, Vol. 9583).
413-430. doi:10.1007/978-3-662-49122-5_20
[10] Marko Doko and Viktor Vafeiadis. 2017. Tackling Real-Life Relaxed Concurrency with FSL++. In ESOP (LNCS). 448-475.
doi:10.1007/978-3-662-54434-1_17
[11] Dana Drachsler, Martin Vechev, and Eran Yahav. 2014. Practical concurrent binary search trees via logical ordering. In
Proceedings of the 19th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (Orlando, Florida,
USA) (PPoPP ’14). Association for Computing Machinery, New York, NY, USA, 343-356. doi:10.1145/2555243.2555269
[12] Yotam M. Y. Feldman, Artem Khyzha, Constantin Enea, Adam Morrison, Aleksandar Nanevski, Noam Rinetzky, and
Sharon Shoham. 2020. Proving highly-concurrent traversals correct. Proc. ACM Program. Lang. 4, OOPSLA, Article
128 (nov 2020), 29 pages. doi:10.1145/3428196
Keir Fraser. 2004. Practical lock-freedom. Ph. D. Dissertation.
Peter Gammie, Antony L. Hosking, and Kai Engelhardt. 2015. Relaxing safely: verified on-the-fly garbage collection for
x86-TSO. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation
(Portland, OR, USA) (PLDI ’15). Association for Computing Machinery, New York, NY, USA, 99-109. doi:10.1145/
2737924.2738006
[15] Timothy L. Harris. 2001. A Pragmatic Implementation of Non-Blocking Linked-Lists. In Proceedings of the 15th
International Conference on Distributed Computing (DISC °01). Springer-Verlag, Berlin, Heidelberg, 300-314.
[16] Maurice Herlihy and Nir Shavit. 2012. The Art of Multiprocessor Programming, Revised Reprint (1st ed.). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.
[17] Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness Condition for Concurrent Objects.
TOPLAS 12, 3 (1990), 463-492. do0i:10.1145/78969.78972
[18] Jaehwang Jung, Janggun Lee, Jaemin Choi, Jaewoo Kim, Sunho Park, and Jeehoon Kang. 2023. Modular Verification of
Safe Memory Reclamation in Concurrent Separation Logic. Proc. ACM Program. Lang. 7, OOPSLA2, Article 251 (oct
2023), 29 pages. doi:10.1145/3622827
[19] Jaehwang Jung, Sunho Park, Janggun Lee, and Jeehoon Kang. 2025. Verifying General-Purpose RCU for Reclamation
in Relaxed Memory Separation Logic. Proc. ACM Program. Lang. PLDI (2025). doi:10.1145/3729246
Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from
the ground up: A modular foundation for higher-order concurrent separation logic. JFP 28 (2018), €20. doi:10.1017/

[13
[14

[lami bt

[20

[t

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 149. Publication date: June 2025.

https://doi.org/10.1109/ISPDC62236.2024.10705402
https://doi.org/10.1145/2429069.2429099
https://doi.org/10.1145/3473586
https://doi.org/10.1007/978-3-662-44202-9_9
https://arxiv.org/abs/2108.06944
https://arxiv.org/abs/2108.06944
https://doi.org/10.22028/D291-43142
https://doi.org/10.1145/3371102
https://doi.org/10.1145/3519939.3523451
https://doi.org/10.1007/978-3-662-49122-5_20
https://doi.org/10.1007/978-3-662-54434-1_17
https://doi.org/10.1145/2555243.2555269
https://doi.org/10.1145/3428196
https://doi.org/10.1145/2737924.2738006
https://doi.org/10.1145/2737924.2738006
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/3622827
https://doi.org/10.1145/3729246
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1017/S0956796818000151

149:24 Sunho Park, Jachwang Jung, Janggun Lee, and Jeehoon Kang

50956796818000151

Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin Timany, Derek Dreyer, and Bart Jacobs.

2020. The future is ours: prophecy variables in separation logic. PACMPL 4, POPL, Article 45 (2020). doi:10.1145/3371113

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:

Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In POPL. 637-650. do0i:10.1145/2775051.

2676980

[23] Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor Vafeiadis. 2017. Strong Logic for Weak
Memory: Reasoning About Release-Acquire Consistency in Iris. In 31st European Conference on Object-Oriented
Programming (ECOOP 2017) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 74). 17:1-17:29. do0i:10.4230/
LIPIcs.ECOOP.2017.17

[24] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. 2017. A Promising Semantics for

Relaxed-Memory Concurrency. In POPL. 175-189. doi:10.1145/3093333.3009850

Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive proofs in higher-order concurrent separation

logic. In POPL. 205-217. doi:10.1145/3009837.3009855

Siddharth Krishna, Nisarg Patel, Dennis Shasha, and Thomas Wies. 2020. Verifying concurrent search structure

templates. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation

(London, UK) (PLDI 2020). Association for Computing Machinery, New York, NY, USA, 181-196. doi:10.1145/3385412.

3386029

Siddharth Krishna, Dennis Shasha, and Thomas Wies. 2018. Go with the Flow: Compositional Abstractions for

Concurrent Data Structures. PACMPL 2, POPL, Article 37 (2018). doi:10.1145/3158125

Siddharth Krishna, Alexander J. Summers, and Thomas Wies. 2020. Local Reasoning for Global Graph Properties. In

Programming Languages and Systems, Peter Miller (Ed.). Springer International Publishing, Cham, 308-335.

Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. 2017. Repairing Sequential Consistency

in C/C++11. In PLDI 618-632. do0i:10.1145/3062341.3062352

[30] Leslie Lamport and Stephan Merz. 2022. Prophecy Made Simple. ACM Trans. Program. Lang. Syst. 44, 2, Article 6 (apr
2022), 27 pages. doi:10.1145/3492545

[31] Sung-Hwan Lee, Minki Cho, Roy Margalit, Chung-Kil Hur, and Ori Lahav. 2023. Putting Weak Memory in Order
via a Promising Intermediate Representation. Proc. ACM Program. Lang. 7, PLDI, Article 183 (jun 2023), 24 pages.
doi:10.1145/3591297

[32] Jean-Marie Madiot and Francois Pottier. 2022. A Separation Logic for Heap Space under Garbage Collection. Proc.
ACM Program. Lang. 6, POPL, Article 11 (jan 2022), 28 pages. doi:10.1145/3498672

[33] P.E. McKenney and J. D. Slingwine. 1998. Read-copy update: Using execution history to solve concurrency problems.
In PDCS ’98.

[34] Glen Mével and Jacques-Henri Jourdan. 2021. Formal Verification of a Concurrent Bounded Queue in a Weak Memory

Model. PACMPL 5, ICFP, Article 66 (2021). doi:10.1145/3473571

Roland Meyer, Thomas Wies, and Sebastian Wolff. 2023. Embedding Hindsight Reasoning in Separation Logic. PACMPL

7, PLDI, Article 182 (2023). doi:10.1145/3591296

[36] Maged M. Michael. 2002. High Performance Dynamic Lock-Free Hash Tables and List-Based Sets. In Proceedings of the
Fourteenth Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA 02). 73-82. do0i:10.1145/564870.
564881

[37] Ike Mulder and Robbert Krebbers. 2023. Proof Automation for Linearizability in Separation Logic. PACMPL 7, OOPSLA1

(2023), 91:462-91:491. doi:10.1145/3586043

Ike Mulder, Robbert Krebbers, and Herman Geuvers. 2022. Diaframe: Automated Verification of Fine-Grained Concur-

rent Programs in Iris (PLDI). 809-824. do0i:10.1145/3519939.3523432

[39] Peter W. O’Hearn, Noam Rinetzky, Martin T. Vechev, Eran Yahav, and Greta Yorsh. 2010. Verifying linearizability with

hindsight. In Proceedings of the 29th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (Zurich,

Switzerland) (PODC ’10). Association for Computing Machinery, New York, NY, USA, 85-94. doi:10.1145/1835698.

1835722

Oracle. 2024. java.util.concurrent.ConcurrentMap. https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/

util/concurrent/ConcurrentMap.html.

Sunho Park, Jachwang Jung, Janggun Lee, and Jeehoon Kang. 2025. Artifact for "Verifying Lock-Free Traversals in

Relaxed Memory Separation Logic", PLDI 2025. doi:10.5281/zenodo.15004020

Sunho Park, Jachwang Jung, Janggun Lee, and Jeehoon Kang. 2025. Verifying Lock-Free Traversals in Relaxed Memory

Separation Logic (Extended Version). https://cp.kaist.ac.kr

Sunho Park, Jaewoo Kim, Ike Mulder, Jaehwang Jung, Janggun Lee, Robbert Krebbers, and Jeehoon Kang. 2024. A

Proof Recipe for Linearizability in Relaxed Memory Separation Logic. Proc. ACM Program. Lang. 8, PLDI, Article 154

(jun 2024), 24 pages. doi:10.1145/3656384

[21

—

[22

—

[25

—

[26

—

[27

—

[28

—

[29

—

[35

—

[38

[t

[40

[t

[41

—

[42

—

[43

[t}

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 149. Publication date: June 2025.

https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3371113
https://doi.org/10.1145/2775051.2676980
https://doi.org/10.1145/2775051.2676980
https://doi.org/10.4230/LIPIcs.ECOOP.2017.17
https://doi.org/10.4230/LIPIcs.ECOOP.2017.17
https://doi.org/10.1145/3093333.3009850
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1145/3385412.3386029
https://doi.org/10.1145/3385412.3386029
https://doi.org/10.1145/3158125
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/3492545
https://doi.org/10.1145/3591297
https://doi.org/10.1145/3498672
https://doi.org/10.1145/3473571
https://doi.org/10.1145/3591296
https://doi.org/10.1145/564870.564881
https://doi.org/10.1145/564870.564881
https://doi.org/10.1145/3586043
https://doi.org/10.1145/3519939.3523432
https://doi.org/10.1145/1835698.1835722
https://doi.org/10.1145/1835698.1835722
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/concurrent/ConcurrentMap.html
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/concurrent/ConcurrentMap.html
https://doi.org/10.5281/zenodo.15004020
https://cp.kaist.ac.kr
https://doi.org/10.1145/3656384

Verifying Lock-Free Traversals in Relaxed Memory Separation Logic 149:25

[44]

[45]

[46]

[47]

[48]
[49]
[50]

[51]

[52]

[53]

[54]

[55]

Nisarg Patel, Siddharth Krishna, Dennis Shasha, and Thomas Wies. 2021. Verifying concurrent multicopy search
structures. Proc. ACM Program. Lang. 5, OOPSLA, Article 113 (oct 2021), 32 pages. doi:10.1145/3485490

Nisarg Patel, Dennis Shasha, and Thomas Wies. 2024. Verifying Lock-Free Search Structure Templates. In 38th European
Conference on Object-Oriented Programming (ECOOP 2024) (Leibniz International Proceedings in Informatics (LIPIcs),
Vol. 313), Jonathan Aldrich and Guido Salvaneschi (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, Dagstuhl,
Germany, 30:1-30:28. doi:10.4230/LIPIcs. ECOOP.2024.30

Azalea Raad, Marko Doko, Lovro Rozi¢, Ori Lahav, and Viktor Vafeiadis. 2019. On Library Correctness under Weak
Memory Consistency: Specifying and Verifying Concurrent Libraries under Declarative Consistency Models. PACMPL
3, POPL, Article 68 (2019). doi:10.1145/3290381

Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O. Myreen. 2010. x86-TSO: a rigorous
and usable programmer’s model for x86 multiprocessors. Commun. ACM 53, 7 (jul 2010), 89-97. doi:10.1145/1785414.
1785443

Dennis Shasha and Nathan Goodman. 1988. Concurrent search structure algorithms. ACM Trans. Database Syst. 13, 1
(mar 1988), 53-90. doi:10.1145/42201.42204

Nir N Shavit, Yosef Lev, and Maurice P Herlihy. 2011. Concurrent lock-free skiplist with wait-free contains operator.
https://patentcenter.uspto.gov/applications/12191008 US Patent 7,937,378.

Abhishek Kr Singh and Ori Lahav. 2023. An Operational Approach to Library Abstraction under Relaxed Memory
Concurrency. PACMPL 7, POPL, Article 53 (2023). doi:10.1145/3571246

Joseph Tassarotti, Derek Dreyer, and Viktor Vafeiadis. 2015. Verifying Read-Copy-Update in a Logic for Weak Memory.
In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation (Portland,
OR, USA) (PLDI ’15). Association for Computing Machinery, New York, NY, USA, 110-120. doi:10.1145/2737924.2737992
RK. Treiber. 1986. Systems Programming: Coping with Parallelism. International Business Machines Incorporated,
Thomas J. Watson Research Center. https://books.google.co.kr/books?id=YQg3HAAACAA]

Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. 2014. GPS: navigating weak memory with ghosts, protocols, and
separation. In Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages
& Applications (Portland, Oregon, USA) (OOPSLA ’14). Association for Computing Machinery, New York, NY, USA,
691-707. doi:10.1145/2660193.2660243

Viktor Vafeiadis and Chinmay Narayan. 2013. Relaxed Separation Logic: A Program Logic for C11 Concurrency. In
OOPSLA. 867-884. doi:10.1145/2509136.2509532

Shale Xiong, Pedro da Rocha Pinto, Gian Ntzik, and Philippa Gardner. 2017. Abstract Specifications for Concurrent
Maps. In Programming Languages and Systems, Hongseok Yang (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
964-990.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 149. Publication date: June 2025.

https://doi.org/10.1145/3485490
https://doi.org/10.4230/LIPIcs.ECOOP.2024.30
https://doi.org/10.1145/3290381
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/42201.42204
https://patentcenter.uspto.gov/applications/12191008
https://doi.org/10.1145/3571246
https://doi.org/10.1145/2737924.2737992
https://books.google.co.kr/books?id=YQg3HAAACAAJ
https://doi.org/10.1145/2660193.2660243
https://doi.org/10.1145/2509136.2509532

149:26 Sunho Park, Jachwang Jung, Janggun Lee, and Jeehoon Kang

Co e o e
i1 i1 i1 i1

[Init J { Add }){ ContainsJ :--{NOCOntainsJ
v' :
W NoContalns}({ Remove }

Group 1 Group 2 Group 3 Group 4
(a) Visualization of the priority queue.

Marked node is represented with an (b) Linearization example of a per-key history of the key 10, repre-
X mark on the node. Dotted mark sented as red dashed arrows. Events in the same group are sorted
and edges are written during the by the wall-clock order of the commit point. The edge es is omitted
removeMin operation that removes 10. from the visualization due to space limit.

Fig. 18. An example of 1-level skiplist-based priority queue

A Verification of Skiplist-Based Priority Queue

To showecase the broad applicability of the shadowed-by relation, we verify a skiplist-based lock-free
priority queue [16, §15.5]. This algorithm extends the standard skiplist (§6) by adding a boolean
flag in each node to indicate logical deletion. We highlight the adaptations required in the original
skiplist proof, specifically how causality reasoning now involves the boolean flag in addition to the
shadowed-by relation.

Algorithm. Fig. 18a illustrates the skiplist-based priority queue. Similar to the skiplist, it consists
of multiple lock-free sorted links at different levels, where new nodes are added from bottom to top,
and removals occur from top to bottom. A notable difference is that logical deletion of a node is
performed by setting a dedicated boolean flag on the node to true, rather than marking an outgoing
edge from the node. The two primary methods are outlined below:

add This method follows the same process as add in the skiplist, except in cases where the key is
already present. If a node with the target key is found, the method checks the node’s flag and
determines the failure of add (committing Contains) only if the flag is false.

removeMin This method traverses the bottom-level list until it finds an unmarked node, then
logically deletes the node by setting its flag to true. If successful, this becomes the commit point,
and then the node is physically removed following the same process as remove in the skiplist.

Verification. The proof strategy outlined in Fig. 7 for the skiplist (§4.2) remains largely applicable,
but a crucial difference arises due to logical deletion being performed by marking nodes instead of
edges. Fig. 18b illustrates this key difference in deriving a total order for the priority queue. Consider
the NoContains event in the second group, which is committed by traversing to e; and reading true
from the boolean flag. A naive approach would yield a total order of Add — NoContains — ...,
which violates the sequential behavior of the priority queue. This issue stems from the possibility
that a thread may reach a stale edge e; during traversal, which does not determine the existence of
the key 10 unlike in the original skiplist algorithm.

To address this, we introduce a strategy to establish a total order for per-key events related to
edges from all nodes sharing the same key. In the example of Fig. 18b, specifically for key 10, we
reorder these events such that Add and Contains (observing false from the boolean flag) precede

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 149. Publication date: June 2025.

Verifying Lock-Free Traversals in Relaxed Memory Separation Logic 149:27

Remove and NoContains (observing true from the boolean flag), as shown in the boxed region.
This ordering preserves causality. In particular, the NoContains event in the second group can be
placed after the Remove event in the third group, as a thread committing NoContains must have
read the mark written by another thread committing Remove.

Received 2024-11-14; accepted 2025-03-06

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 149. Publication date: June 2025.

	Abstract
	1 Introduction
	2 Background
	2.1 Lock-Free Linked Lists
	2.2 View-Based Operational Semantics for RMC
	2.3 Separation Logic for RMC

	3 Per-Key Linearizable History Specification
	4 Reasoning about Traversal with Shadowing
	4.1 The Shadowed-By Relation
	4.2 Proving Per-Key Linearizable History Specification with Shadowed-By Relation

	5 Model of Shadowed-By Relation
	6 Verification of Lock-Free Skiplist
	7 Related and Future Work
	Acknowledgments
	References
	A Verification of Skiplist-Based Priority Queue

