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We report the first formal verification of a lock-free list, skiplist, and a skiplist-based priority queue against a

strong specification in relaxed memory consistency (RMC). RMC allows relaxed behaviors in which memory

accesses may be reordered with other operations, posing two significant challenges for the verification of

lock-free traversals. (1) Specification challenge: formulating a specification that is flexible enough to capture

relaxed behaviors, yet simple enough to be easily understood and used. We address this challenge by proposing

the per-key linearizable history specification that enforces a total order of operations for each key that respects

causality, rather than a total order of all operations. (2) Verification challenge: devising verification techniques

for reasoning about the reachability of edges for traversing threads, which can read stale edges due to relaxed

behaviors. We address this challenge by introducing the shadowed-by relation that formalizes the notion of

outdated edges. This relation enables us to establish a total order of edges and thus their associated operations

for each key, required to satisfy the strong specification. All our proofs are mechanized on the iRC11 relaxed

memory separation logic, built on the Iris framework in Rocq.
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1 Introduction
Concurrency libraries exploit relaxed memory consistency (RMC) to minimize expensive synchro-

nizing operations and leave only the ones that are necessary for their correctness. While this helps

achieve higher performance, it makes reasoning about their correctness—which is difficult already

in the strongly synchronized sequentially consistent (SC) memory—even more difficult. The designer

must consider not only all possible interleavings of instructions but also the relaxed behaviors

where the effect of a memory instruction is not immediately visible to other threads.
1
Even worse,
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In this work, we focus on the Repaired C11 (RC11) memory model [29], an in-order memory model where the relaxed

behaviors only concern past instructions but not future instructions. Lee et al. [31] show that this is a valid assumption for

programming language semantics.
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function new()→ ArraySet

// infinite array with elements initialized to false
return new Atomic<bool>[∞]

function add(s, k)→ bool

return s[k].cas(false, true, acqrel)

function remove(s, k)→ bool

return s[k].cas(true, false, acqrel)

function contains(s, k)→ bool

return s[k].load(acq)

Fig. 1. An implementation of a set of natural numbers based on an infinite array. The “Atomic<..>” type

signifies that the location is shared and mutable. Reading and writing to such locations should be done

explicitly with methods like load() and cas().

formally specifying the libraries and reasoning about their clients becomes a significant challenge

as the relaxed implementations usually expose relaxed behaviors.

Recent advances in separation logic for RMC have made verifying concurrency libraries against

precise specifications more tractable. Early logics such as GPS [53], RSL [54], and FSL [9, 10]

explored modular reasoning principle for C/C++’s RMC model, and they have been incorporated

into the iRC11 logic [7, 8, 23] to leverage the Iris separation logic framework [20, 22, 25]. Dang et al.

[8] introduced several styles of strong library specifications in iRC11. Specifically, their linearizable

history specification for Treiber’s stack [52] explains the stack’s behavior in a familiar style based

on linearizability [17]—the standard specification in SC, while admitting relaxed implementations.

Park et al. [43] proposed a proof recipe for the linearizable history specification, and verified several

concurrent data structures such as stacks, queues, and atomic reference counting.

However, Park et al.’s recipe does not scale to set and map data structures. First, their specifica-

tion cannot describe behaviors that arise in relaxed set and map implementations. Second, their

verification method does not address concurrent traversal—a key ingredient of high-performance

set and map implementations such as skiplists [13, 49], which is known to be particularly difficult

even in SC and thus has been under extensive study until recently [12, 26, 35, 39, 45].

In this paper, we address these two challenges on verifying concurrent traversals in RMC as

follows. We focus on sets for simplicity of presentation, but the same points apply to maps.

Specification challenge. Reasonably relaxed implementations of concurrent set may not satisfy the

linearizable history specification, because the specification requires that there be a total order called

linearization order among all events that satisfies the sequential specification of set, i.e., behaves like

a history of set operations; and preserves causality, i.e., keeps the happens-before order enforced by

prior synchronization. The only relaxed behaviors allowed in this specification are inserting events

into a point in the past in a way that does not violate those conditions. However, we observe that

the linearization specification is too strong for existing concurrent set implementations.

To illustrate this, consider an idealized implementation of the set of natural numbers using

an infinite array of booleans, shown in Fig. 1. Elements are added (resp. removed) by atomically

changing the value of the corresponding array slot from false to true (resp. true to false) using the

compare-and-swap (CAS) operation. The invocations of cas (resp. load) use acqrel (resp. acq) access

modes that are not as strongly synchronized as SC (the precise semantics is introduced in §2).

We first observe that this set implementation (and other more realistic ones) satisfy the lin-

earizable history specification when considering only a single key. Fig. 2a illustrates an example

execution where the left thread 𝑇𝐿’s invocation of add(1) precedes the right thread 𝑇𝑅 ’s invocation

of remove(1) in the wall clock time. However, 𝑇𝑅 ’s remove may fail, because RMC allows reading a

stale value from a location (the initial false in this case) unless the thread has observed a newer value

written to that location. The blue dotted arrow explains how the linearizable history specification

admits this behavior: the failed remove event reads from the initialization event at which point

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 149. Publication date: June 2025.



Verifying Lock-Free Traversals in Relaxed Memory Separation Logic 149:3

s := new();

// true

// false

add(s,1);

remove(s,1);

(a) A read event can read from a stale write event

as long as they are not synchronized.

s := new();

// true

// false

add(s,1);

remove(s,1);

// false

remove(s,2);

// true

add(s,2);

?

(b) Non-linearizable execution of set.

Fig. 2. Examples of stale reads in a set.

the set is empty, and is linearized between the initialization event and 𝑇𝐿’s successful add event.

The specification allows this behavior despite the inconsistency with the wall clock time because

there is no explicit synchronization that induces causality between them. On the other hand, if 𝑇𝑅
has seen add(1) through an explicit synchronization, then coherence rule of RMC ensures that 𝑇𝑅
cannot see an older value from the location and thus the remove succeeds.

However, for operations on different keys, this set implementation exhibits even more relaxed

behavior that violates the specification. For example, in Fig. 2b, 𝑇𝐿 adds 1 and tries removing 2,

and symmetrically, 𝑇𝑅 adds 2 and tries removing 1. Both threads may fail to remove the elements

as in Fig. 2a, because they are not synchronized, their CAS may read the stale values from each

other’s slot. This inhibits the existence of a total order of events. Without loss of generality, suppose

𝑇𝐿 :add(s,1) comes before 𝑇𝑅 :add(s,2), depicted by the arrow labeled a question mark. Similar to

Fig. 2a, the removal of 1 should come before the addition of 1 (blue dotted arrow), and the same for

2 (orange dashed arrow). By intra-thread causality, the removal of 1 should come after the addition

of 2 (black arrow in the right thread). Thus, the total order has a cycle, which is a contradiction.

The problem here is that the linearizable history specification is overly strong for the relaxed

implementation in Fig. 1. Although the implementation could be modified to satisfy the strong

specification, many realistic implementations, such as Java’s ConcurrentMap [40], often forgo a

total order among events on different keys in favor of better performance. Therefore, it is important

to develop a more relaxed specification style that formalizes such relaxed behaviors.

For libraries without a total order, Raad et al. [46] proposed a flexible specification framework

based on partial orders and consistency conditions specific to each library. For example, their set

specification [46, §C.2] consists of several consistency rules for each key, such as “a value cannot

be added twice before being removed”.
2
These rules reflect the fact that each key is independent

by default, but at the same time, take account of the causality (“before”) induced by client’s

synchronization. However, this indirect characterization of the behavior forgoes simplicity.

To strike the balance between flexibility and simplicity, we introduce the per-key linearizable

history specification for the set (and map) library, which specifies each key with Dang et al. [8]’s

linearizable history specification. That is, each key in the domain gets a separate linearizable history

of operations that changes the state of the key (i.e., its existence), and the causality among events on

different keys are separately recorded. This combination adequately captures the nature of relaxed

set implementations without resorting to a complex set of consistency conditions.

For example, in Fig. 2b the behavior discussed above is a parallel composition of histories

represented by the blue dotted arrow for key 1 and orange dashed arrow for key 2, without causality

between them.

2
This is an informal interpretation of the formal condition.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 149. Publication date: June 2025.



149:4 Sunho Park, Jaehwang Jung, Janggun Lee, and Jeehoon Kang

s := new()

add(s, 1); add(s, 3); add(s, 4); add(s, 2)

// thread 𝑇𝐿 // thread 𝑇𝑅
remove(s, 1) remove(s, 3)

assert(!contains(s, 3))

431

head node4node3node1

𝑒02

𝑒23
𝑒12

2

node2

𝑒01 𝑒13

remove(1)

𝑒24
remove(3)

add(2)

add(3)add(1)

𝑒34

add(4)

add(2)

shb

shb

Fig. 3. An example program using list-based set and its possible outcome. Each edge is labeled by its name

and the operation that wrote it. The red dashed edges (𝑒01, 𝑒13, and 𝑒23) are stale values overwritten by the

solid line edges below it (𝑒02, 𝑒12, and 𝑒24, respectively). The stale edges are only observable in RMC.

Verification challenge. While the array-based set implementation is straightforward to verify

against the per-key linearizable history specification, it is not the case for traversal-based set

implementations such as linked lists and skiplists. Fig. 3 illustrates the challenge with a simple yet

insightful example involving an implementation based on sorted linked list. Here, add inserts a new

node with the given key between the nodes of the adjacent keys, and remove detaches the target

node by making its predecessor point to its successor. Initially, 1, 3, 4, and 2 are added to the set in

that order, and then 𝑇𝐿 and 𝑇𝑅 concurrently remove 1 and 3, respectively. 𝑇𝑅 then asserts 3 is not in

the set, which should succeed if the set satisfies the per-key linearizable history specification.

In SC, verification of traversal-based set implementations is straightforward because the existence

of a key is typically associated with the reachability (from the head of the data structure) of the

node containing the key. For example, in Fig. 3, remove(3) makes node3 unreachable from head by

updating 𝑒23 to 𝑒24. Then the proof proceeds as follows. After remove(3),𝑇𝑅 remembers the fact that

the set does not contain 3. From this fact and the association between set membership and node

reachability, 𝑇𝑅 learns that there is no reachable node with key 3. Therefore, it directly follows that

contains(3) does not arrive at a node with key 3 and the assertion succeeds.

This relatively straightforward proof, however, does not work for RMC because threads may read

stale values. To model this possibility, RMC retains all stale values in the memory (red dashed edges

in Fig. 3), implying that all nodes that have ever been inserted into the list remain reachable in terms

of the graph structure. Therefore, we must prove that after observing remove(3), contains(3) cannot

reach node3 in the view of 𝑇𝑅—which we call view-unreachable from 𝑇𝑅—even in the presence of

the stale edges. We address this challenge as follows.

First, we note that each set operation on a key is committed
3
at a memory operation on a

containing edge of the key, which is an edge that determines whether the key is present in the

set from the perspective of the thread that reads it. For example, 𝑇𝐿’s invocation of remove(1) is

committed at the CAS that atomically updates head’s next pointer from the edge 𝑒01 to 𝑒02, and the

edge 𝑒02 contains key 1 as it ensures the absence of the key in the set after the operation. Similarly,

𝑇𝑅 ’s invocation of remove(3) is committed at the CAS that atomically updates node2’s next pointer

from 𝑒23 to 𝑒24, which contains key 3 as it ensures the absence of the key.

Second, we observe that the containing edges of each key form a total order that respects causality,

which can be used for deriving the per-key linearization order. This relation between edges, written

𝑒
shb−−→ 𝑒′ and read 𝑒 is shadowed by 𝑒′, says that traversing to and observing 𝑒′ prevents traversing to

and observing 𝑒 , hence respecting causality, i.e., the observation of 𝑒′ cannot happen before that of

𝑒 . For an example of totality, 𝑒13
shb−−→ 𝑒23

shb−−→ 𝑒24 holds for key 3 in Fig. 3 as follows. (1) 𝑒13 shb−−→ 𝑒23:

3
We say that an operation is committed at a memory operation if the operation appears to execute atomically at the memory

operation. The notion of commit is captured in logically atomic Hoare triples in separation logic (see §3 for more detail).
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the observation of 𝑒23 prevents taking the path [𝑒01; 𝑒13], regardless of which path the thread took

to reach node2 and observe 𝑒23. If it took [𝑒02], coherence prevents reading 𝑒01. Otherwise, it took
[𝑒01; 𝑒12] and coherence prevents reading 𝑒13. (2) 𝑒23 shb−−→ 𝑒24: the observation of 𝑒24 prevents taking

the paths [𝑒02; 𝑒23] and [𝑒01; 𝑒12; 𝑒23] from the coherence rule at the next pointer field of node2.

(3) 𝑒13 shb−−→ 𝑒24: similar to (1).
Third, we capture the essence of the reasoning about shadowed-by relation with a set of simple

proof rules that apply to various traversal-based data structures. For example, our proof rules can

derive 𝑒13
shb−−→ 𝑒24 in the following steps: (1) in add(2), we get 𝑒13

shb−−→ 𝑒12 and 𝑒13
shb−−→ 𝑒23; (2) in

remove(3), we get 𝑒23
shb−−→ 𝑒24; (3) by transitivity with (1) and (2), we have 𝑒13

shb−−→ 𝑒24. While the

step (2) is direct from coherence on a single location, justifying the proof rules for steps (1) and (3)

are not easy because they involve multiple locations. The key insight enabling such proof rules is

capturing a common invariant in traversal-based data structures: the observation of a node implies

the observation of the path leading to that node, such that each edge in the path is the edge used

for inserting the node it points to. Such a path, which we call the reference path (e.g., [𝑒01; 𝑒12] for
node2), provides an intersection (e.g., node1) with the undesirable path (e.g., [𝑒01; 𝑒13]) at which we

can use the coherence rule. Thanks to the inductive structure of reference path, we can define the

shadowed-by relation that admits inductive proof rules that follow the structural changes made by

the data structure’s algorithm.

Contributions. Addressing these challenges, we report the first formal verification of a lock-free

list, skiplist, and a skiplist-based priority queue against a strong specification in RMC, and verify a

nontrivial client using the specification of the priority queue. Specifically:

• In §3, we formalize per-key linearizable history specifications for concurrent sets and maps.

We demonstrate the flexibility of these specifications by applying them to more complex data

structures, such as concurrent priority queues.

• In §4, we present the verification technique for traversal-based data structures in RMC using

the lock-free linked list implementations of a set [15, 36] as a running example. We present the

proof rules for the shadowed-by relation and how to derive per-key linearization order from

the shadowed-by order of containing edges.

• In §5, we define the notion of view-reachability that captures the reachability of an edge in the

view of a thread, and the model of the shadowed-by relation that captures how traversing to

one edge affects the view-reachability of another.

• In §6, we sketch the proof of a lock-free skiplist [49] to showcase the wide applicability of our

method. Despite the subtlety of its traversal algorithm, our verification method applies only

with minor adjustments to take account of some additional invariants specific to it.

• In §A [42], we present a proof of a skiplist-based priority queue to demonstrate our method’s

application in a traversal strategy requiring an additional boolean field. The shadowed-by

relation remains sufficient to derive a total order among events, with minor adjustments to

account for the boolean field.

• In the artifact [41], we present all our results mechanized on the iRC11 relaxed memory

separation logic [7] built on the Iris framework [20, 22, 25] in Rocq (formerly Coq). Our Rocq

development consists of: 1,559 lines of code (LOC), excluding empty lines and comments, for

the theory of the shadowed-by relation; 5,362 LOC for the proof of the linked list (§4.2); 7,373

LOC for the proof of the skiplist (§6); 5,444 LOC for the proof of the linked-list-based map; 9,589

LOC for the proof of the skiplist-based priority queue; and 776 LOC for verifying a nontrivial

client using the per-key linearizable history specification of the priority queue.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 149. Publication date: June 2025.
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Algorithm 1 The Harris-Michael list with wait-free contains

1: struct Node
2: key: int | −∞ |∞
3: next: Atomic<Node*>

4: function find(list: Node*, key: int)

5: → (Atomic<Node*>*, Node*)

6: restart:
7: var prev: Atomic<Node*>* := &(*list).next

8: var cur: Node* := (*prev).load(acq)

9: loop
10: var next := (*cur).next.load(acq)

11: var mark := get_mark(next)

12: next := unmarked(next)

13: if mark then
14: if (*prev).cas(cur, next, rel) then
15: cur := next; continue
16: else goto restart
17: else
18: if key ≤ (*cur).key then
19: return (prev, cur)

20: prev := &(*cur).next; cur := next

21: function add(list: Node*, key: int)→ bool

22: loop
23: var (prev, cur) := find(list, key)

24: if (*cur).key = key then return false

25: var node := new Node {key: key, next: cur}

26: if (*prev).cas(cur, node, acqrel) then
27: return true

28: function remove(list: Node*, key: int)→ bool

29: loop
30: var (prev, cur) := find(list, key)

31: if (*cur).key ≠ key then return false

32: var n := unmarked((*cur).next.load(acq))

33: if !(*cur).next.cas(n, marked(n), acqrel) then
34: continue
35: (*prev).cas(cur, n, rel); return true

36: function contains(list: Node*, key: int)→ bool

37: var cur: Node* := (*list).next.load(acq)

38: loop
39: if key ≤ (*cur).key then break
40: cur := unmarked((*cur).next.load(acq))

41: if (*cur).key ≠ key then return false

42: return !get_mark((*cur).next.load(acq))

−∞ ∞21

head tailnode2node1

(a) Structure

𝑛1 𝑛2𝑒1

𝑒2

shb-overwrite

(b) Marking 𝑛1 as logically deleted

𝑛1 𝑛2

𝑛3

𝑒1

𝑒2 𝑒3

shb-overwrite

shb-insert

(c) Inserting node 𝑛3

𝑒1

𝑒

𝑒2 𝑒3
𝑛1 𝑛2 𝑛3 𝑛4

shb-overwrite shb-detach

(d) Physically detaching nodes 𝑛2 and 𝑛3

Fig. 4. Structure and link modifications in lock-free lists. The labeled dashed arrows are discussed in §4.

2 Background
We review lock-free linked lists (§2.1), and semantics (§2.2) and separation logic (§2.3) for RMC.

2.1 Lock-Free Linked Lists
Algorithm 1 presents an implementation of the Harris-Michael list [36], a classic lock-free imple-

mentation of the set data structure based on sorted singly linked list. Fig. 4a illustrates the structure

of the list. Its node consists of a key and a mutable pointer to the next node. The root of the list is a

sentinel node with the key −∞. For simplicity of presentation, we assume that there is a sentinel

node at the tail with the key∞, so that the next node of an internal node is always non-null.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 149. Publication date: June 2025.
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The add function first searches for the position of the given key in the list with the find function

(line 23). This returns a tuple (prev, cur) where prev is a pointer to the next field of the last node

whose key is less than the given key; and cur is a pointer to the first node whose key is not less than

key. If cur’s key differs from key, we attempt to insert a new node with key between prev and cur

with a compare-and-swap (CAS) (line 26). If successful, it is the commit point of the add function.

Otherwise, the procedure restarts from the beginning. Fig. 4c shows the result of a successful

insertion.

The remove function starts with find as well. If the key is found, the node containing the key is

first marked as logically deleted ( ̸→ in the figure). This is done by a CAS on its next node pointer

field, setting the pointer to the same value butmarked, i.e., with its least significant bit (LSB) set.
4
If

successful, the list structure changes as shown in Fig. 4b, and the remove operation is committed at

that point. (As such, Fig. 4a represents the singleton list of key 2.) Then, it tries physically detaching

the marked node (line 35). Note that the CAS requires the expected value to be unmarked. This

ensures that logically deleted nodes are immutable, preventing various erroneous behaviors such

as creating a link from a removed node to a live node, which may cause the live node to get lost.

The find function locates the prev and cur by traversing the list from the head. To achieve lock-

freedom of add and remove, find helps clean up the logically deleted nodes (line 15)—otherwise,

they may end up in an infinite CAS loop failure due to a marked node that has not been cleaned up

by remove yet. There are other traversal strategies. The algorithm by Harris [15] (omitted) identifies

a chain of consecutive marked nodes and detached them at once, as shown in Fig. 4d.
5
On the other

hand, the contains function shown here ignores the marked nodes to achieve wait-freedom.

2.2 View-Based Operational Semantics for RMC
We review the basic principles of the view-based operational semantics [7, 23, 24] for the RC11

memory model [29] for C/C++. We refer the readers to Dang [6] for the full details.

The key characteristic of RMC is that it allows reading stale values. To account for possibility

of stale reads, the memory is not just a map from location to a single value, but rather a (finite)

map to a set of messages in each location:M ∈ Mem ≜ Loc
fin−⇀ ℘(Msg). A message contains the

written value and some other data discussed below.

But RMC does not allow reading arbitrarily stale values. Specifically, the coherence rule stipulates

that the accesses to a single location essentially behave like SC. This means that the messages in

the same locations are totally ordered, and a thread that observed a message from a location is not

allowed to read an older message from that location. To model the order of messages, each message

is assigned a numeric timestamp 𝑡 ∈ Time. That is, Mem ≜ Loc
fin−⇀ Time

fin−⇀ Msg. We refer to

the timestamp of a message𝑚 as𝑚.time. To model threads’ observations, each thread maintains

a thread view 𝑉 ∈ View ≜ Loc
fin−⇀ Time. When a thread with view 𝑉 reads from a location ℓ , a

message𝑚 with 𝑉 (ℓ) ≤𝑚.time is chosen non-deterministically fromM(ℓ), and the thread view is

updated to include𝑚.time. For writes, the new message is given a fresh timestamp 𝑡 > 𝑉 (ℓ).
For synchronization, threads need to transfer their observation to other threads, or in other

words, establish the happens-before ordering. In Algorithm 1, a thread that inserts a node to the

list should transfer the observation that the node’s key and next fields are initialized (line 25), so

that other threads traversing the list do not see the uninitialized state. The list uses release-acquire

synchronization to achieve this. At line 26, the cas operation with relmode (implied by acqrelmode)

releases the thread’s observation in the message it writes. At line 10, the load operation with acq

4
This step was omitted in Fig. 3 for the sake of simplicity.

5
In fact, the Harris-Michael list is a variant of Harris’s algorithm that is made compatible with the manual memory

management method called hazard pointers [36]. Our verification technique applies to both traversal methods.
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mode acquires the observation released in the message it read. This is modeled by attaching a

view to the message, called message view. A message created by a rel mode write uses the writing

thread’s view as the message view. When reading a message with acq mode, the message’s view

is incorporated into the thread view with the join operation 𝑉1 ⊔𝑉2 ≜ ℓ ↦→ max(𝑉1 (ℓ),𝑉2 (ℓ)). A
cas operation with acqrel mode both acquires the view of the previous message and releases the

thread’s view. Operations with rlx (relaxed) mode do not interact with message view.

2.3 Separation Logic for RMC
We review the fundamentals of the iRC11 separation logic [7] for RC11, built upon Iris [20].

The key feature of iRC11 is reasoning about the outcome of memory operations in relation

to what the executing thread has observed so far. To account for thread observations, iRC11’s

propositions are view-dependent and interpreted in the view of the asserting thread. For example,

the seen-view assertion ⊒𝑉 says that the current thread’s view is at least 𝑉 , where the partial order

on views is defined as 𝑉1 ⊑ 𝑉2 ≜ ∀ℓ .𝑉1 (ℓ) ≤ 𝑉2 (ℓ). Seen-view assertion is persistent in that it does

not assert some exclusive ownership—it is just a piece of information that keeps holding after being

established. For reasoning about Atomic<..> locations, iRC11 provides the atomic points-to assertion

ℓ ↦→at ℎ, which asserts the ownership of location ℓ with history ℎ ∈ Time
fin−⇀ Msg. For example, it

is used in conjunction with the seen-view assertion in the proof rule for acquire load (simplified):

{⊒𝑉 ∗ ℓ ↦→at ℎ} ℓ .load(acq) { 𝑣 . ∃𝑚 ∈ ℎ. 𝑣 =𝑚.value ∗𝑉 (ℓ) ≤𝑚.time ∗ ⊒𝑚.view ∗ ℓ ↦→at ℎ }
The rule guarantees that the thread reads a message𝑚 that does not violate coherence (𝑉 (ℓ) ≤
𝑚.time), and joins the message view𝑚.view into its thread view (⊒𝑚.view).

Invariants and the view-at modality. In SC, the standard principle for reasoning about shared

resources is invariants, 𝐼 , which expresses that the proposition 𝐼 holds at all times. A thread can

temporarily access 𝐼 while executing a memory instruction as far as it reestablishes 𝐼 afterward.

In RMC, not every proposition can be turned into an invariant, because an assertion that holds

in a thread’s view does not necessarily hold in another thread’s view. For example, ⊒𝑉 does not

make sense. Therefore, iRC11 invariants requires the contents to be objective, i.e., do not depend

on view. To share a non-objective proposition 𝑃 via an invariant, we should first turn it into an

objective one by putting it under the view-at modality @𝑉 with VA-intro:

(VA-intro)

𝑃 ⊢ ∃𝑉 . ⊒𝑉 ∗@𝑉 𝑃

(VA-elim)

⊒𝑉 ∗@𝑉 𝑃 ⊢ 𝑃

Intuitively, @𝑉 𝑃 says if the thread view is at least 𝑉 , then it can obtain 𝑃 . This is formalized

by the rule VA-elim, which eliminates the modality when combined with ⊒𝑉 . For example, the

release-acquire synchronization via location ℓ can be verified with the invariant of the following

form: ∃𝑉 .@𝑉 ℓ ↦→at {𝑚} ∗@𝑚.view𝑃 . The thread that releases the assertion 𝑃 uses VA-intro and

writes the message𝑚 with view that includes 𝑃 ’s view, and the reading thread acquires the message

view and uses VA-elim to strip the view-at modality of 𝑃 .6

3 Per-Key Linearizable History Specification
Linearizable history specification [8] assumes a total order of events that conflicts with relaxed set

implementations in RMC (§1). To address this problem, we propose a per-key variant of linearizable

history specification, presented in Fig. 5. The Set(ℓ,H) predicate denotes that the location ℓ points

to a set with a collectionH of per-key histories. The Key(ℓ, 𝑘, 𝐻𝑘 ) predicate asserts that the key 𝑘
of the set ℓ has the key history 𝐻𝑘 that satisfies linearizable history specification as follows.

6
iRC11 provides proof rules for accessing atomic points-to assertions under view-at modality.
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𝐻𝑘 ∈ History ≜ EventId
fin−−⇀ Event Event ≜ ⟨type : EventType, sync : View, eview : ℘(EventId)⟩

Set(ℓ,H ∈ Key fin−−⇀ History) ≜ ∗
𝑘 ↦→𝐻𝑘 ∈H

Key(ℓ, 𝑘, 𝐻𝑘 ) 𝜎 ∈ KeyState ≜ Bool × View

(Set-Add-Spec)

⟨Key(ℓ, 𝑘, 𝐻𝑘 ) ∗ ⊒𝑉
∗ SeenKey(ℓ, 𝑘, 𝑀𝑘 )⟩ add(ℓ , 𝑘) ⟨𝑏. ∃𝑖, 𝐸,𝑉 ′ ⊒ 𝑉 . Key(ℓ, 𝑘, 𝐻𝑘 ⊎ {𝑖 ↦→ 𝐸}) ∗ ⊒𝑉 ′ ∗

SeenKey(ℓ, 𝑘, 𝑀𝑘 ⊎ {𝑖}) ∗
𝐸 = ⟨type : if 𝑏 then Add else Contains, sync : 𝑉 ′, eview : 𝑀𝑘⟩⟩

(Set-Key-Linearizable)

Key(ℓ, 𝑘, 𝐻𝑘 ) ⊢ ∃ lin. permutation(dom(𝐻𝑘 ), lin) (total order of events)

∧ interp(𝐻𝑘 , lin, 𝜎0) (sequential specification)

∧ (∀𝑖1, 𝑖2, 𝐸2 . 𝐻𝑘 (𝑖2) = 𝐸2 ∧ 𝑖1 ∈ 𝐸2 .eview→ 𝑖1
lin−−→ 𝑖2) (preservation of causality)

𝜎
𝐸−→ 𝜎 ′ ≜ (𝐸.type = Init ∧ 𝜎 ′ = (false, 𝐸.sync) ∧ 𝜎 = 𝜎0 = (false, ∅))

∨ ∃𝑉 .𝑉 ⊑ 𝐸.sync ∧

©­­­­­«
(𝐸.type = Contains ∧ 𝜎 ′ = 𝜎 = (true,𝑉 ))
∨ (𝐸.type = NoContains ∧ 𝜎 ′ = 𝜎 = (false,𝑉 ))
∨ (𝐸.type = Add ∧ 𝜎 ′ = (true, 𝐸.sync) ∧ 𝜎 = (false,𝑉 ))
∨ (𝐸.type = Remove ∧ 𝜎 ′ = (false, 𝐸.sync) ∧ 𝜎 = (true,𝑉 ))

ª®®®®®¬
interp(𝐻𝑘 , lin, 𝜎) ≜ lin = [] ∨ ∃𝑖, 𝐸, lin′, 𝜎 ′ . 𝐻𝑘 (𝑖) = 𝐸 ∧ lin = [𝑖] ++ lin′ ∧ 𝜎 𝐸−→ 𝜎 ′ ∧ interp(𝐻𝑘 , lin

′, 𝜎 ′)

Fig. 5. Per-key linearizable history specification for sets.

Specification for each key. The key history 𝐻𝑘 is a finite map from event id to the contents of the

event. An event consists of three elements: (1) the type of event; (2) the sync view (sync) used for

describing the synchronization induced by the event; and (3) the event view (eview), a set of events

that the executing thread has observed before executing this event, inducing causality.

Each method of the set is given a specification that describes how it generates an event. For

example, Set-Add-Spec is the specification for the addmethod. (Specifications for the other methods

are similar and omitted.) The specification is given in the form of logically atomic Hoare triple

(LATs) [4, 22]. An LAT of the form ⟨𝑃⟩ 𝑒 ⟨𝑣 .𝑄⟩ is similar to usual Hoare triple {𝑃 } 𝑒 {𝑣 .𝑄} : it says
the program 𝑒 takes 𝑃 as precondition, evaluates to 𝑣 , and yields postcondition 𝑄 . In addition, an

LAT asserts that 𝑒 behaves as if it is atomic. Specifically, it says that 𝑒 contains an atomic instruction,

called commit point, at which 𝑃 is transformed to 𝑄 . As such, an LAT in SC naturally imply the

linearizability of concurrent objects by choosing the linearization point as the commit point [3].

For the full discussion on LATs, especially in RMC, we refer the reader to Dang et al. [8].

Set-Add-Spec takes three preconditions: the Key assertion for the key 𝑘 being added, the seen-

view assertion, and SeenKey(ℓ, 𝑘, 𝑀𝑘 ) that asserts the thread has observed the set of events 𝑀𝑘

of 𝑘 . The specification updates those assertions with a new event 𝐸 with id 𝑖 and returns them

as postcondition. The type of 𝐸 is either Add if it successfully added the key, or Contains if the

set already has the key. The event gets event view𝑀𝑘 , recording the fact that it happens after the

events that the executing thread has observed. Furthermore, event gets a view 𝑉 ′, which is also

incorporated into the thread’s observation, as indicated by the returned seen-view assertion.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 149. Publication date: June 2025.



149:10 Sunho Park, Jaehwang Jung, Janggun Lee, and Jeehoon Kang

Keys(ℓ,H ∈ Key fin−−⇀ History) ≜ ∗
𝑘 ↦→𝐻𝑘 ∈H

Key(ℓ, 𝑘, 𝐻𝑘 )

SeenKeys(ℓ,M ∈ Key fin−−⇀ ℘(EventId)) ≜ ∗
𝑘 ↦→𝑀𝑘 ∈M

SeenKey(ℓ, 𝑘, 𝑀𝑘 )

(removeMin-spec)

⟨ ⊒𝑉 ∗ Keys(ℓ,H) ∗SeenKeys(ℓ,M) ⟩ removeMin(ℓ) ⟨𝑟 . ∃H ′,M′,𝑉 ′ ⊒ 𝑉 .Keys(ℓ,H ′) ∗ ⊒𝑉 ′ ∗ SeenKeys(ℓ,M′) ∗
∀ 𝑘.∃ 𝑖, (H ′ (𝑘),M′ (𝑘)) =

(H (𝑘) ⊎ {𝑖 ↦→ ⟨type : NoContains, ...⟩},M(𝑘) ⊎ {𝑖})
if (∃𝑘 ′ > 𝑘. 𝑟 = Some(𝑘 ′)) ∨ 𝑟 = None

(H (𝑘) ⊎ {𝑖 ↦→ ⟨type : Delete, ...⟩},M(𝑘) ⊎ {𝑖})
if 𝑟 = Some(𝑘)

(H (𝑘),M(𝑘)) otherwise

⟩
Fig. 6. Specification for priority queues.

The Set-Key-Linearizable rule asserts that each key’s history of events is indeed linearizable

as follows. (1) Sequential specification: There is a total order lin of events in 𝐻𝑘 that yields a valid

interpretation of 𝐻𝑘 according to the transition relation of key state. A key state 𝜎 is a tuple (𝑏,𝑉 ),
where 𝑏 is a boolean indicating whether the key is in the set, and 𝑉 is the view that has been

released in this key so far. The transition relation 𝜎
𝐸−→ 𝜎 ′ describes how the event 𝐸 interacts with

the key’s state. For example, an Add event flips 𝑏 from false to true, acquires the view released so

far, and releases the view of the thread that executed this event. (2) Preservation of causality: The

lin order preserves the causality enforced by prior synchronization. That is, when a thread has seen

the event 𝑖1 before it executed the event 𝑖2, then 𝑖1 must come before 𝑖2 in lin.

Specification for maps. The implementation and specification of maps require only minor ad-

justments to account for the value associated with keys: (1) in the implementation, we add .value

field to each node; and (2) in the specification, we associate the value with each per-key event (e.g.,

Add(𝑣)). The proof strategy discussed in the rest of this paper apply to both set and map.

Specification for complex data structures. The per-key linearizable history specifications offer

sufficient flexibility to support a wide range of complex data structures, as demonstrated below.

First, our specification support data structures with different per-key behaviors. Leveraging

the inherent flexibility of the original linearizable history specification [43], the per-key history

specification retains generality regarding the transition relation (𝜎
𝐸−→ 𝜎 ′) and event types (e.g.,

Contains). This allows it to be easily adapted to other data structures that require different transition

systems, including those with weaker synchronization (e.g., NoContains does not synchronize with

other events) or maps with a replace operation that updates the value asociated with a given key.

Second, our specification style supports operations involving multiple keys by simultaneously

considering multiple per-key histories. A prime example is the removeMin operation in a priority

queue, which removes and returns the minimal key. The per-key specification in style of Set-Add-

Spec cannot be directly applied to removeMin because determining a key’s minimality requires

examiningmultiple key histories. To address this, we extend the pre- and post-conditions to consider

multiple key histories, as shown in Fig. 6. Specifically, the specification for removeMin requires

the Key and SeenKey predicates to hold for every key as a pre-condition. Then, the post-condition
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(if a key 𝑘 is returned) adds a NoContains event to each key 𝑘 ′ < 𝑘 and a Delete event to key 𝑘 ,

enabling the client to determine the returned key’s minimality by applying Set-Key-Linearizable to

each relevant per-key history.

4 Reasoning about Traversal with Shadowing
We develop a method for verifying traversal-based sets against the per-key linearizable history

specification. As outlined in §1, reasoning about causality in traversal-based sets hinges on the

notions of view-reachability and shadowed-by relation. We formalize these concepts (§4.1); and

demonstrate their application to the verification of traversal-based sets, using a lock-free list as a

running example (§4.2).

In this section, we assume that each node of data structures has a single mutable pointer field,

and define an edge as a tuple of the from node, the to node, and the timestamp of the message

corresponding to the edge.
7
While we focus on lock-free lists, our proof strategy applies to other

traversal-based data structures with minor adaptations (see §6 for the verification of a skiplist).

4.1 The Shadowed-By Relation

(shb-no-reverse-hb)

𝑒1
shb−−→ 𝑒2 ∗ 𝑒2 ↣ 𝑉2 ∗𝑉2 ⊑ 𝑉1 ∗𝑉1 ⇝ 𝑒1 ⊢ False

𝑉 ⇝ 𝑒 ≜ ∃𝑝. Path(𝑒.from, 𝑝) ∗ ∀𝑒′ ∈ (𝑝 ++ [𝑒]).𝑉 (𝑒′ .from) ≤ 𝑒′ .time (view-reachable)

𝑒 ↣ 𝑉 ≜ @𝑉 (SeenRefPath(𝑒.from) ∗ SeenEdge(𝑒)) (view-traversed)

The predicate 𝑒1
shb−−→ 𝑒2,

8
read 𝑒1 is shadowed by 𝑒2, says that a thread that observed 𝑒2 cannot

reach 𝑒1 anymore. The rule shb-no-reverse-hb reflects the intuition behind
shb−−→. It involves traversals

to edges 𝑒1 and 𝑒2, where 𝑒1
shb−−→ 𝑒2. The premise of the form 𝑉 ⇝ 𝑒 , read 𝑒 is view-reachable from

𝑉 , asserts that it is possible for a thread with view 𝑉 to traverse from root to 𝑒 . That is, there is a

path to 𝑒.from such that every edge in the path, as well as 𝑒 itself, can be read without violating

coherence. On the other hand, the premise of the form 𝑒 ↣ 𝑉 , called the view-traversed assertion,

says that a thread has traversed to 𝑒 and observed (read or wrote) 𝑒 , and the resulting view is 𝑉 .

Given 𝑒1
shb−−→ 𝑒2, shb-no-reverse-hb asserts that if a thread has observed the result of traversal to 𝑒2

(𝑒2 ↣ 𝑉2 ∗𝑉2 ⊑ 𝑉1), then it cannot traverse to the shadowed edge 𝑒1 (𝑉1 ⇝ 𝑒1 ⊢ False), or in other

words, 𝑒1 is unreachable in the thread’s view.

The view-reachable and view-traversed assertions do not require dedicated introduction rules, as

they immediately follow from observations collected during traversal and data structure invariant.

We defer detailed discussion of this point to §4.2, and here we focus on the basic properties of the

shadowed-by relation and the rules for establishing it.

Shadowed-by assertion is persistent (shb-persistent) and objective (shb-objective), i.e., it is a

piece of knowledge that does not depend on the view of the thread. Additionally, the shadowed-by

relation is irreflexive (shb-irreflexive) and transitive (shb-transitive). The labeled dashed arrows

7
To support multiple pointer fields, we need to add the field name in the tuple to differentiate two edges from different

fields. We omit this in our formalization as it is not required in our case studies.

8
In the Rocq development, the predicates and proofs rules are parametrized by the root node 𝑛root of the data structure

under verification. We omit this parameter in the paper for the simplicity of the presentation.
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in Fig. 4 (page 6) illustrates how the proof rules for establishing
shb−−→ apply in lock-free lists.

(shb-persistent)

persistent(𝑒1 shb−−→ 𝑒2)
(shb-objective)

objective(𝑒1 shb−−→ 𝑒2)
(shb-irreflexive)

𝑒
shb−−→ 𝑒 ⊢ False

(shb-transitive)

𝑒1
shb−−→ 𝑒2 ∗ 𝑒2 shb−−→ 𝑒3 ⊢ 𝑒1 shb−−→ 𝑒3

(shb-overwrite)

𝑒1 .from = 𝑒2.from

𝑒1.time < 𝑒2.time ⊢ 𝑒1 shb−−→ 𝑒2

Overwriting. Fig. 4b shows the case when a node 𝑛1 is marked as logically deleted. This is done

by overwriting its edge 𝑒1 to the next node 𝑛2 with the new marked edge 𝑒2 using a CAS. Clearly,

𝑒2 shadows 𝑒1, since the write of 𝑒2 comes after that of 𝑒1 in 𝑛1’s next pointer location history.

shb-overwrite expresses this property with the timestamp order of 𝑒1 and 𝑒2 in the next field of 𝑛1.

This rule applies analogously to 𝑒1
shb−−→ 𝑒2 that arises in Figs. 4c and 4d.

(new-link-to-new-node)

𝑒2.to = 𝑛3

Fresh(𝑛3) ≡−∗ 𝑛3 ←� [𝑒2]

(new-link-to-existing-node)

𝑒′ .to = 𝑛

𝑛 ←� (®𝑒 ++ [𝑒]) ∗ 𝑒 shb−−→ 𝑒′ ≡−∗ 𝑛 ←� (®𝑒 ++ [𝑒; 𝑒′])

(shb-insert)

𝑛3 = 𝑒3.from

𝑒1
shb−−→ 𝑒2 ∗ 𝑛3 ←� [𝑒2] ++ _ ⊢ 𝑒1 shb−−→ 𝑒3

(ptb-objective)

objective(𝑛 ←� ®𝑒)

Inserting. Fig. 4c shows the insertion of 𝑛3 between 𝑛1 and 𝑛2, originally connected by 𝑒1. 𝑛3 is

initialized with an edge 𝑒3 to 𝑛2 and then linked to 𝑛1 with an edge 𝑒2. We note that 𝑒3 shadows 𝑒1.

In order for a thread to observe 𝑒3, it should first observe an edge 𝑒 targeting node 𝑛3. 𝑒 can be either

the initial edge 𝑒2 or a new edge added after 𝑛3 is inserted. As shown throughout Fig. 4, the linked

list algorithm ensures that new edges to 𝑛3 shadow 𝑒2, which in turn shadows 𝑒1. By transitivity,

𝑒1
shb−−→ 𝑒 . Since the thread has observed 𝑒 , it cannot reach 𝑒1 anymore. Therefore, 𝑒1

shb−−→ 𝑒3.

The new-link-to-new-node, new-link-to-existing-node, and shb-insert rules provide an abstrac-

tion for this argument. new-link-to-new-node registers a fresh node 𝑛3 pointed by 𝑒2 to the graph

and yields a pointed-by-edges assertion 𝑛3 ←� [𝑒2], which says that 𝑒2 is the initial incoming edge

of 𝑛3.
9
(Here, Iris’s “update” connective ≡−∗ can be understood as implication.) In general, the

pointed-by-edges assertion 𝑛 ←� ®𝑒 records the list of all incoming edges ®𝑒 of node 𝑛 ordered by
shb−−→.

Whenever a new edge to 𝑛 is created, 𝑛’s pointed-by-edges assertion is updated accordingly with

new-link-to-existing-node. shb-insert then takes 𝑛3 ←� [𝑒2] ++ _ and 𝑒1
shb−−→ 𝑒2 as the evidence

that the initial edge of 𝑛3 shadows 𝑒1, and concludes 𝑒1
shb−−→ 𝑒3.

(ptb-persist)

𝑛 ←� ®𝑒 ≡−∗ 𝑛 □←� ®𝑒
(pptb-persistent)

persistent(𝑛 □←� ®𝑒)
(ptbsnap-persistent)

persistent(𝑛 ◦←� ®𝑒)

(ptbsnap-get)

𝑛 ←� ®𝑒 ∨ 𝑛 □←� ®𝑒 ⊢ 𝑛 ◦←� ®𝑒
(ptbsnap-valid)

(𝑛 ←� ®𝑒1 ∨ 𝑛 □←� ®𝑒1) ∗ 𝑛 ◦←� ®𝑒2 ⊢ ®𝑒1 = ®𝑒2 ++ _

(ptbsnap-shb)

𝑛 ◦←� ®𝑒 ⊢ sorted(®𝑒, shb−−→)

(shb-detach)

𝑒2 .from = 𝑛2

𝑒1
shb−−→ 𝑒 ∗ 𝑛2 □←� (_ ++ [𝑒1]) ⊢ 𝑒2 shb−−→ 𝑒

9
Despite the wording “the initial incoming edge”, this rule does not require 𝑒2 to be the only edge to 𝑛3. Shadowed-by only

guarantees unreachability of registered edges, so it is safe to ignore edges that are not of interest. So, to be precise, the

assertions says 𝑒2 is the initial among the 𝑛3’s incoming edges of interest. An example of ignored edges are shown in §6.
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Fig. 7. An execution result of lock-free linked list set operations and linearizable history of the key 20. Edges

𝑒1, . . . , 𝑒4 are the containing edges of 20. The edge 𝑒4 is in gray, indicating that it is marked. The total order of

events (red dashed arrows) on the key 20 is derived from the shadowed-by ordering of the containing edges.

The view-reachability relation (⇝) holds for each event’s prior view, and the view-traversed relation (↣)

holds for each event’s sync view.

Detaching. Fig. 4d illustrates an example of the cleanup procedure performed by remove and find

functions, where 𝑛2 and 𝑛3 are detached at once from the linked list. The new edge 𝑒 shadows the

outgoing edges of the detached nodes, namely 𝑒2 and 𝑒3. This is because the linked list algorithm

ensures that no operation creates a new edge to a detached node. In other words, there cannot be a

new path to 𝑛2 and 𝑛3. Therefore, once a thread observes 𝑒 , it cannot reach 𝑛2 (because 𝑒1
shb−−→ 𝑒)

and thus cannot observe 𝑒2. Inductively, the thread cannot reach 𝑛3 and then observe 𝑒3.

This reasoning is reflected by logical rules. ptb-persist freezes the pointed-by-edges assertion of

the head node of the detached chain into the persistent variant that can no longer be updated with

new-link-to-existing-node. shb-detach takes this result to transform shadowed-by of its incoming

edge (established by shb-overwrite) to that of its outgoing edge. Shadowing of the remaining edges

in the detached chain are established similarly from the result of the previous edge.

Pointed-by-edges has another persistent variant 𝑛 ◦←� ®𝑒 . Unlike 𝑛 □←� ®𝑒 , it merely asserts that ®𝑒
is a snapshot of the prefix of 𝑛’s incoming edge list (ptbsnap-valid), and thus does not consume

𝑛 ←� ®𝑒 on creation (ptbsnap-get).

4.2 Proving Per-Key Linearizable History Specification with Shadowed-By Relation
We now turn to verifying the per-key linearizable history specification using the shadowed-by

relation. Fig. 7 demonstrates our proof method on the key 20 of a lock-free list, which is based on

two core invariants of traversal-based sets:

Inv1 The containing edges of a key are totally ordered by the shadowed-by relation.

Inv2 For every edge 𝑒 , @𝑒.viewSeenRefPath(𝑒.to) holds, i.e., reading the edge with acq (incorporat-

ing the message view 𝑒.view) ensures that the reference path to 𝑒.to is observed.

Ordering the containing edges. We say that a key 𝑘 is contained in an edge 𝑒 if 𝑒 determines the

existence of 𝑘 in the set. The definition of containing edge is specific to each data structure. For

lock-free lists, 𝑒 is a containing edge of 𝑘 iff 𝑒.from.key ≤ 𝑘 < 𝑒.to.key: contains(𝑘) returns true

when it reads an edge 𝑒 such that 𝑒 is unmarked and 𝑒.from.key = 𝑘 ; and false if it reads 𝑒 with

𝑒.from.key < 𝑘 < 𝑒.to.key or a marked 𝑒 with 𝑒.from.key = 𝑘 .10 In Fig. 7, the containing edges of

the key 20 are 𝑒1, 𝑒2, and 𝑒4 indicating non-existence of the key, and 𝑒3 indicating its existence.

10
This differs from the simpler list shown in Fig. 3, where containing edge is defined by 𝑒.from.key < 𝑘 ≤ 𝑒.to.key.
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Inv1 states that a newly created containing edge of 𝑘 shadows the existing containing edges of 𝑘 ,

forming a total order. For example, it is easy to see that 𝑒1
shb−−→ 𝑒2

shb−−→ 𝑒3
shb−−→ 𝑒4 holds in Fig. 7.

Maintaining the observation of reference path. Inv2 states that each incoming edge of a node 𝑛

contains the observation of 𝑛’s reference path, i.e., the path from the root to 𝑛 that only consists of

the edges used for inserting each node (see §5 for the precise definition). We formalize this property

with the predicate SeenRefPath(𝑛), which asserts the observation of 𝑛’s reference path.

Inv2 is maintained along the link modifications. For example, in Fig. 4c, we should show

@𝑒2 .viewSeenRefPath(𝑛3) and @𝑒3 .viewSeenRefPath(𝑛2). For the former, we use the following rule.

(SeenRefPath-insert)

𝑒2.from = 𝑛1 𝑒2 .to = 𝑛3

SeenRefPath(𝑛1) ∗ SeenEdge(𝑒2) ∗ 𝑛3 ◦←� [𝑒2] ⊢ SeenRefPath(𝑛3)

The rule simply says that the observation for the inserted node 𝑛3 is just addition of the observation

for the predecessor 𝑛1 and the initial incoming edge (SeenEdge(𝑒2)), which closely follows the

definition of reference path. The rule is applied at the view 𝑒2.view (which is included in the view

of the thread that wrote the edge 𝑒2), obtaining the desired result. For the latter, we establish it by

taking @𝑒1 .viewSeenRefPath(𝑛2) from 𝑒1 and raising its view to 𝑒3.view.

Tracking the relation between events and edges. We track the committing edge of each operation,

i.e., the containing edge that each operation read or wrote to commit its event. The right side of

Fig. 7 shows the association between events on the key 20 and the committing edges. The new

function commits Init event with the initial edge 𝑒1 between the sentinel nodes; the successful

invocation of add(20) commits the Add event with the edge 𝑒3 it wrote at line 26 (Algorithm 1);

contains(20) reads the edge 𝑒3 at line 42 and commits Contains event; and so on. The events are

grouped by the committing edges. Since we are tracking this association for each key, an edge may

have empty set of events on that key. For example, 𝑒2 does not have events for 20, but it would have

an Add event for 10 (not shown here).

For each event and its committing edge, we maintain the view-reachable and view-traversed

assertions in preparation for applying shb-no-reverse-hb in the next step. For an event 𝐸 and its

committing edge 𝑒 , the edge is view-reachable from the prior view 𝑉 prior
of the event: 𝑉 prior ⇝ 𝑒 .

The prior view of an event is defined as a join of the sync view of each event that the thread has

observed before it started operation, i.e., 𝑉 prior =
⊔

𝑖∈𝐸.eview𝐻𝑘 (𝑖).sync where 𝐻𝑘 is a key history

at the beginning of operation. The proof of view-reachability is done by applying the proof rule for

the load method (§2.3) applied at each traversal step, collecting the evidence that each load did not

violate coherence.

On the other hand, the view-traversed assertion is established for the sync view of the event:

𝑒 ↣ 𝐸.sync. This assertion says that 𝐸.sync has seen both the reference path to the committing

edge (from Inv2) and the edge itself (as the event either read or wrote the edge).

Deriving total order of per-key events. Finally, we derive a total order of events on each key that

respects the causality induced by prior synchronization in two steps. (1)We order event groups (each

consisting of the events that commit with the same edge) according to the shadowed-by relation of

their committing edges (red dashed arrows between shaded areas in Fig. 7). (2) Within each event

group, we order the events by the wall-clock order of the commit point (red dashed arrows inside

the shaded areas). Then the constructed total order respects causality because happens-before order

never opposes the shadowed-by relation (shb-no-reverse-hb); or the wall-clock order.
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𝑒1

𝑒2

𝑒′
1

shb𝑒′
2

<timeSeen 𝑝2

∀𝑝1𝑛root
𝑛int

Fig. 8. A visualization of the intuition of
shb−−→

𝑒1
shb−−→ 𝑒2

?

=

∃𝑝2 . SeenPath(𝑒2.from, 𝑝2) ∗
∀𝑝1. Path(𝑒1.from, 𝑝1) −∗ ∃𝑛int, 𝑒′1, 𝑒′2.

intersect(𝑝1 ++ [𝑒1], 𝑝2 ++ [𝑒2], 𝑛int, 𝑒′1, 𝑒′2) ∧
𝑒′
1
.time < 𝑒′

2
.time

𝑒2

𝑛root

𝑛1

𝑛2

𝑝′
2

𝑒1

𝑝2

Fig. 9. A wrong, naive encoding of the intuition. The figure at right shows that the discrepancy of 𝑝2 is

problematic.

5 Model of Shadowed-By Relation
Fig. 8 visualizes the intuition behind the shadowed-by relation 𝑒1

shb−−→ 𝑒2. In a nutshell, if a thread

has observed 𝑒2 through a path 𝑝2 from the root node 𝑛root (hereafter we assume that a path starts

from 𝑛root unless mentioned otherwise), then whenever it traverses towards 𝑒1 through a path 𝑝1, it

always ends up encountering an intersection node 𝑛int of 𝑝1 and 𝑝2 that diverts the traversal away

from 𝑒1, preventing the thread from reading 𝑒1. Specifically, at 𝑛int, the edge 𝑒
′
1
∈ 𝑝1 is older than

the edge 𝑒′
2
∈ 𝑝2. i.e., 𝑒′1.time < 𝑒′

2
.time.

In this section, we develop the formal definition of the shadowed-by relation that suitably

captures this intuition and enjoys the properties in §4.1. We start with a naive encoding of the

intuition which fails to satisfy some desirable properties, and address the problems with the notion

of fixed reference path to 𝑒2 that is the oldest among all paths to 𝑒2.

A wrong definition. Suppose we use the definition shown in Fig. 9 where we pick as 𝑝2 the path

that a thread actually followed to reach 𝑒2, and assert the existence of the desired intersection for

all 𝑝1. At first glance, this definition seems to satisfy the shadowing rules in Fig. 4. However, it is

not suitable for stating data structure invariants, because
shb−−→ may or may not hold depending on

𝑝2 despite that the graph structure is identical (thus not satisfying shb-objective). Consider the list

structure shown at the right of Fig. 9, where a node 𝑛1 is first inserted and then another node 𝑛2
with a smaller key is inserted. If a thread has observed 𝑒2, then it must have followed either the

path 𝑝2 that goes directly to 𝑛1 or 𝑝
′
2
that goes through 𝑛2. If the thread followed 𝑝2, it can still read

𝑒1, so 𝑒1 is not shadowed by 𝑒2. But on the other hand, if it followed 𝑝′
2
, it cannot read 𝑒1 anymore,

and thus 𝑒1 is shadowed by 𝑒2.

A fixed reference path. To prevent such a discrepancy, we should use a fixed reference path for 𝑝2
that everyone can agree on. Specifically, if a thread has observed 𝑒2.from, then it must also have
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𝑒4

𝑛root

𝑛1

𝑝4

𝑒1
𝑝2

𝑒2

𝑛2

𝑛3
𝑛4

Fig. 10. An example that shows that using inserting thread’s path as the reference is problematic. 𝑛2’s

inserting path is 𝑝2, and 𝑛4’s is 𝑝4.

𝑒1
shb−−→ 𝑒2 ≜ ∃𝑝2 . RefPath(𝑒2 .from, 𝑝2) ∗

2
©­­«
∀𝑝1. Path(𝑒1.from, 𝑝1) −∗ ∃𝑛int, 𝑒′1, 𝑒′2.

intersect(𝑝1 ++ [𝑒1], 𝑝2 ++ [𝑒2], 𝑛int, 𝑒′1, 𝑒′2) ∧
𝑒′
1
.time < 𝑒′

2
.time

ª®®¬
RefPath(𝑛, 𝑝) ≜ OldestPath(𝑛root, 𝑛, 𝑝)

OldestPath(𝑛1, 𝑛2, []) ≜ 𝑛1 = 𝑛2

OldestPath(𝑛1, 𝑛2, 𝑒 :: ®𝑒) ≜ 𝑛1 = 𝑒.from ∧ 𝑒.to ◦←� [𝑒] ∗OldestPath(𝑒.from, 𝑛2, ®𝑒)
Path(𝑛, 𝑝) ≜ Path

′ (𝑛root, 𝑛, 𝑝)
Path

′ (𝑛1, 𝑛2, []) ≜ 𝑛1 = 𝑛2

Path
′ (𝑛1, 𝑛2, 𝑒 :: ®𝑒) ≜ 𝑛1 = 𝑒.from ∧ 𝑒.to ◦←� (_ ++ [𝑒]) ∗ Path′ (𝑒.to, 𝑛2, ®𝑒)

intersect(𝑝′
1
, 𝑝′

2
, 𝑛int, 𝑒

′
1
, 𝑒′

2
) ≜ ∃𝑖1, 𝑖2. 𝑝′1 [𝑖1] = 𝑒′

1
∧ 𝑝′

2
[𝑖2] = 𝑒′

2
∧ 𝑛int = 𝑒′

1
.from = 𝑒′

2
.from

SeenRefPath(𝑛) ≜ ∃𝑝. RefPath(𝑛, 𝑝) ∗ ∀𝑒 ∈ 𝑝. SeenEdge(𝑒)
SeenEdge(𝑒) ≜ ∃𝑉 . ⊒𝑉 ∗𝑉 (𝑒.from) ≥ 𝑒.time

Fig. 11. The correct definition of
shb−−→

acquired the observation of the reference path. (This corresponds to Inv2.) By using the observation

of the reference path, we can still apply the intuition of shadowing as before.

A seemingly natural choice for the reference path would be the path of the thread who inserted

𝑒2.from to the list, because its knowledge of 𝑝2 acquired along the traversal is released in the edge

to 𝑒2.from. However, this definition with the inserting thread’s path allows too many pairs of edges

to be related by shadowing, breaking transitivity. For example, consider the following scenario in

Fig. 10. Node 𝑛2 is inserted by a thread who followed 𝑝2 that goes through the marked edge from 𝑛3,

and 𝑛4 is inserted by another thread who followed 𝑝4. Note that 𝑒1
shb−−→ 𝑒2 holds because at 𝑛3, 𝑝2

takes the newer edge than 𝑒1. Additionally, 𝑒2
shb−−→ 𝑒4 holds because 𝑒4 is newer than 𝑒2. However,

𝑒1
shb−−→ 𝑒4 does not hold, because 𝑝4 is older than the edge from 𝑛root to 𝑛3. The transitivity is broken

either due to 𝑒1
shb−−→ 𝑒2 or 𝑒2

shb−−→ 𝑒4. Since 𝑒2
shb−−→ 𝑒4 must be correct to satisfy shb-overwrite, the

culprit must be 𝑒1
shb−−→ 𝑒2. Therefore, we need to strengthen the definition to prevent 𝑒1

shb−−→ 𝑒2.

The oldest path for the reference. The key idea for ruling out such redundant shadowing is to

use the oldest path to 𝑒2.from. The oldest path consists only of the initial incoming edge of each
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Fig. 12. Proof of shb-insert
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𝑛23
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shb
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(a) 𝑛12 →∗ 𝑛23

𝑒2

𝑒1

𝑒3

𝑛23

𝑛12

shb

shb

𝑛′
23

(b) 𝑛23 →+ 𝑛12

Fig. 13. Cases in the proof of shb-transitive

node in the path. In Fig. 10, among 3 paths to 𝑛1, 𝑝4 is the oldest edge. If we use this path as the

reference path to 𝑛1, no edge in any path to 𝑛1 can ever be shadowed by 𝑒2 (and any other edges

from 𝑛1), rightfully ruling out 𝑒1
shb−−→ 𝑒2.

Formalizing this intuition, the correct definition in Fig. 11 asserts the existence of the reference

path 𝑝2 that satisfies RefPath(𝑒2 .from, 𝑝2), where RefPath(𝑛, 𝑝) is defined asOldestPath(𝑛root, 𝑛, 𝑝).
Here, OldestPath(𝑛1, 𝑛2, 𝑝) is an inductively defined predicate that asserts each edge 𝑒 in the path

𝑝 from 𝑛1 to 𝑛2 is the initial incoming edge of 𝑒.to, using the snapshot of pointed-by-edge predicate.

From this definition, it follows that an oldest path is uniquely defined, and that a subpath of an

oldest path is also an oldest path, which does not hold for the inserting path:

(oldestpath-uniqe)

OldestPath(𝑛1, 𝑛2, 𝑝) ∗ OldestPath(𝑛1, 𝑛2, 𝑝′) ⊢ 𝑝 = 𝑝′

(oldestpath-concat)

OldestPath(𝑛1, 𝑛2, 𝑝12) ∗OldestPath(𝑛2, 𝑛3, 𝑝23) ⊢ OldestPath(𝑛1, 𝑛3, 𝑝12 ++ 𝑝23)

The “for any path 𝑝1 to 𝑒1 .from, . . . ” part in the definition of 𝑒1
shb−−→ 𝑒2 is wrapped in the

persistence modality “2” to ensure that it is persistent. The Path predicate is defined similarly to

OldestPath, except that it can take arbitrary edges. The definition of intersection (intersect) is as

expected, but it also takes account of the paths that arrive at the same destination. Furthermore,

we define the SeenRefPath(𝑛) as the observation of each edge in the reference path.

We now prove the proof rules for the shadowed-by relation. Rules shb-persistent, shb-objective,

shb-irreflexive, and shb-overwrite are direct consequences of the definition. The properties of the

pointed-by-edges follow from the properties of the authoritative PCM [22] of append-only lists

and its invariant that the incoming edges are sorted by
shb−−→.

Proof of shb-no-reverse-hb. Let 𝑝1 be the path taken from 𝑉1 ⇝ 𝑒1. Feed 𝑝1 into the definition

of 𝑒1
shb−−→ 𝑒2 (as 𝑝1). This gives edges 𝑒

′
1
and 𝑒′

2
on the intersection node (𝑒′

1
.from = 𝑒′

2
.from)

with the reference path to 𝑒2 such that 𝑒′
1
.time < 𝑒′

2
.time. But we have 𝑒′

2
.time ≤ 𝑉2 (𝑒′2.from) ≤

𝑉1 (𝑒′2.from) ≤ 𝑒′1.time, where each inequality is from 𝑒2 ↣ 𝑉2,𝑉2 ⊑ 𝑉1, and𝑉1 ⇝ 𝑒1. Contradiction.

Proof of shb-insert (Fig. 12). Let 𝑝1 be any path to 𝑒1.from, and 𝑝2 be the reference (i.e., the oldest)

path to 𝑒2.from. 𝑒1
shb−−→ 𝑒2 gives an intersection node of 𝑝1 and 𝑝2 where the edge towards 𝑝2 is

newer. By the assumption 𝑒3 .from←� [𝑒2] ++ _, 𝑒2 is the initial incoming edge. Therefore, 𝑝2 ++ [𝑒2]
is the reference path to 𝑒3.from, and the aforementioned intersection establishes 𝑒1

shb−−→ 𝑒3.

Proof of shb-transitive. Let 𝑝1 be any path to 𝑒1.from, and 𝑝2 and 𝑝3 be the reference path to 𝑒2
and 𝑒3, respectively. Let 𝑛12 (resp. 𝑛23) be the intersection node between 𝑝1 and 𝑝2 (resp. 𝑝2 and 𝑝3)

obtained from 𝑒1
shb−−→ 𝑒2 (resp. 𝑒2

shb−−→ 𝑒3). We do a case analysis on the order of 𝑛12 and 𝑛23 in 𝑝2.
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(a) 𝑒1 is the last edge in 𝑝2.
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shb
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(b) 𝑒1 is not the last edge in 𝑝2.

Fig. 14. Cases in the proof of shb-detach

• 𝑛12 →∗ 𝑛23 (Fig. 12a). The path 𝑛root →∗ 𝑛12 →∗ 𝑛23 →∗ 𝑒3 .from is a concatenation of a subpath

of 𝑝2 and 𝑝3, so it is the oldest path to 𝑒3.from by oldestpath-concat. 𝑛12 is an intersection of

𝑝1 and 𝑒3 .from where the edge towards the latter is newer. Therefore, 𝑒1
shb−−→ 𝑒3.

• 𝑛23 →+ 𝑛12 (Fig. 12b). Feed the path 𝑛root →∗ 𝑛12 →+ 𝑒2.from into the definition of 𝑒2
shb−−→ 𝑒3.

This gives an intersection node 𝑛′
23

where the edge towards 𝑝3 is newer than the edge in

𝑛′
23
→∗ 𝑛12. Since 𝑛′23 is also an intersection between 𝑝1 and 𝑝3, 𝑒1

shb−−→ 𝑒3 holds.

Proof of shb-detach. Let 𝑝2 be any path to 𝑒2.from, and 𝑝 be the reference path to 𝑒.from. Let 𝑒′ be
the last edge in 𝑝2. We proceed by a case analysis on 𝑒′:

• 𝑒′ = 𝑒1 (Fig. 14a). In other words, ∃𝑝1 . 𝑝2 = 𝑝1 ++ [𝑒1], where 𝑝1 is a path to 𝑒1.from. Feed 𝑝1
into 𝑒1

shb−−→ 𝑒 to get the intersection of 𝑝1 and 𝑝 . This intersection is also an intersection of 𝑝2
and 𝑝 that witnesses 𝑒2

shb−−→ 𝑒 .

• 𝑒′ ≠ 𝑒1 (Fig. 14b). From Path(𝑛2, 𝑝2), we obtain 𝑛2 ◦←� (_ ++ [𝑒′]). From the assumption

𝑛2 □←� (_ ++ [𝑒1]), ptbsnap-valid, and ptbsnap-shb, we have 𝑒′ shb−−→ 𝑒1. By the assumption

𝑒1
shb−−→ 𝑒2 and shb-transitive, 𝑒′ shb−−→ 𝑒 . Since the prefix of 𝑝2 with 𝑒′ removed is a path to

𝑒′ .from, we can obtain an intersection with 𝑝 . This intersection witnesses 𝑒2
shb−−→ 𝑒 as well.

6 Verification of Lock-Free Skiplist
We showcase the wide applicability of the shadowed-by relation by verifying a lock-free skiplist [13,

49] whose nodes have multiple mutable pointer fields, one for each level. We review the algorithm

and its peculiarity regarding the reachability of nodes, and explain how to use the shadowed-by

relation in conjunction with additional invariants to account for skiplist’s traversal algorithm.

Algorithm. Fig. 15 illustrates a lock-free skiplist due to Shavit et al. [49]. The skiplist consists of

multiple lock-free sorted linked lists from level 0 to 𝐻 (exclusive). Each node consists of a key 𝑘 ,

and a list of next pointer fields from level 0 to ℎ (ℎ ≤ 𝐻 , with ℎ chosen randomly). The bottom (0th)

level list is the main list that contains all the nodes. The upper levels serve as shortcuts, containing

a subset of the nodes. This means that the containing edge of a key is on the main list (level 0).

Skiplist maintains two sentinel nodes with height 𝐻 and keys −∞ and∞, respectively.
The skiplist implements the set similarly to the Harris-Michael list (Algorithm 1). We briefly

walk through each method and discuss their interesting properties. In particular, the commit points

are at the sub-operations on the main list on the bottom level.

find This internal method traverses the skiplist to find a key 𝑘 and locates edges on all levels where

insert and delete can happen. As illustrated in Fig. 15, it starts from the leftmost node at the

uppermost level. For each level, it traverses the list until arriving at a node with key 𝑘 ′ ≥ 𝑘 .

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 149. Publication date: June 2025.



Verifying Lock-Free Traversals in Relaxed Memory Separation Logic 149:19

L0

L1

L2

L3

−∞ ∞10 20

✓

✓ ✓

✓

✓ ✓

Fig. 15. 4-level lock-free skiplist with keys 10 and 20. Or-

ange dotted line indicates the path taken during a traversal

finding 20. Edges with check mark (✓) are the ones that

are read during the traversal.

𝑛root

L0

L1

shb

𝑒′
1

𝑒2

𝑒

𝑒1

𝑛

𝑒′
2

Fig. 16. 𝑒2
shb−−→ 𝑒 does not hold because of 𝑒′

1
.

Whenever it finds a marked edge during the traversal, it tries detaching the node. If it fails,

it restarts the traversal from the beginning. After finishing the traversal at one level, it goes

downstairs, continuing the traversal from the current node.

add Addition of a new node occurs from bottom to top. It first finds the position to insert, then

inserts a new node into the bottom level. If successful, this is the commit point of an Add event.

Then it proceeds to insert the node at the upper levels.

remove Removal of a node occurs from top to bottom. It first finds the node to remove, and then

marks its next pointer fields from the uppermost level. Successful marking of the bottom level

is the commit point of a Remove event. Then it calls find again to detach the marked node.

contains It traverses the skiplist similarly to find, but does not detach any node to ensure wait-

freedom. The commit point comes from the traversal on the main list.

While based on lock-free linked list, skiplist is unique in that the correctness of its traversal

not only depends on the reachability of nodes, but also on the top-to-bottom order of intra-node

traversal (find and contains) and the top-to-bottom of order of edge marking (remove).

For example, Fig. 16 illustrates a scenario where one thread 𝑇1 is suspended just after inserting

the node 𝑛 on the 0th level (𝑒1); meanwhile, another thread 𝑇2 marked the node as logically deleted

(𝑒2 and 𝑒′
2
); and 𝑇2 is detaching the node on the 0th level (𝑒). To prove the per-key linearizable

history specification, we should show that observing 𝑒 prevents reading the unmarked edge that 𝑒2
overwrote (not shown). In proving lock-free list, we derived this from the fact that 𝑒 shadows 𝑒2
and the unmarked edge. However, 𝑒2

shb−−→ 𝑒 does not actually hold in skiplist, because the list of 𝑛’s

incoming edges is not frozen and thus shb-detach does not apply. Specifically, in the case 𝑇1 wakes

up and installs an edge 𝑒′
1
to 𝑛 on the 1st level, a thread that observed 𝑒 can still get to 𝑛 via 𝑒′

1
.

Despite that, skiplist’s traversal strategy does prevent reading 𝑒2 even if it followed 𝑒′
1
. This is

because 𝑒2.view contains the observation of 𝑒′
2
(since remove marks node from top to bottom), and

𝑒.view contains the observation of 𝑒2. So if the traversing thread has observed 𝑒 , then it should also

have observed 𝑒′
2
. This makes the thread either detach 𝑛 (in find) or ignore 𝑛 (in contains).

Verification. Despite the peculiarity of skiplist, our proof strategy still largely applies. Specifically,

we observe that containing edges are totally ordered by the restriction of the shadowed-by relation

to level 0 edges (i.e., ignoring the upper level edges; see §4.1, page 12). Combined with some

intra-node invariant that captures top-to-bottom marking property, we can rule out traversals that

are inconsistent with causality and prove the linearizable history specification.
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𝑒𝑖

𝑝2
shb

𝑝𝑖
𝑒1

𝑒2

𝑝1
𝑛𝑖

(a) Intersection between 𝑝𝑖 and 𝑝2 is on 𝑝1

𝑒𝑖

𝑝2

shb

𝑝𝑖
𝑒1

𝑒2

𝑝1

shb

∃𝑒 𝑗

𝑛𝑖

(b) Intersection between 𝑝𝑖 and 𝑝2 is on 𝑝𝑖

Fig. 17. Cases in the proof of unreachability of 𝑒1 in skiplist. All paths except the dashed ones are on level 0.

Our proof proceeds as follows. Let 𝑒1 and 𝑒2 be level-0 edges such that 𝑒1
shb−−→ 𝑒2 holds among

the level-0 edges. We want to show that if a thread has observed 𝑒2, then it cannot read 𝑒1 anymore.

Towards contradiction, suppose the thread arrived at level 0 on node 𝑛𝑖 and read the path 𝑝1 ending

with 𝑒1. Let 𝑒𝑖 be the first edge in 𝑝1, and 𝑝𝑖 be the reference path to 𝑛𝑖 . Fig. 17 illustrates two

possible cases for the location of the intersection node between 𝑝𝑖 and the reference path 𝑝2 to

𝑒2. If the intersection is on 𝑝1 (Fig. 17a), then the thread traversed 𝑝1, which allows us to derive

contradiction similarly to the proof of shb-no-reverse-hb.

If the intersection is on 𝑝𝑖 (Fig. 17b) this argument no longer applies as the thread did not actually

traverse 𝑝𝑖 . Instead, we find another edge 𝑒 𝑗 on 𝑝2 such that 𝑒 𝑗 is another containing edge of 𝑛𝑖 .key.

It is clear that 𝑒𝑖
shb−−→ 𝑒 𝑗 holds (from Inv1). Similarly to the lock-free list, the following three points

holds in skiplist: (1) 𝑒2 contains the observation of 𝑒 𝑗 (from Inv2); and (2) 𝑒 𝑗 contains the observation

of the level 0 marked edge coming out of 𝑛𝑖 , which we call 𝑒′𝑖 ; (3) 𝑒
′
𝑖 contains the observation of

the level 0 unmarked edges coming out of 𝑛𝑖 . In addition, the marking process of remove function

guarantees that (4) 𝑒′𝑖 contains the observation of all the marked edges in the upper levels of 𝑛𝑖 . If

𝑒𝑖 ≠ 𝑒′𝑖 , (1-3) imply that the thread must have read 𝑒′𝑖 instead of 𝑒𝑖 . If 𝑒𝑖 = 𝑒′𝑖 , (4) implies that the

thread must have read a marked edge at an upper level of 𝑛𝑖 and thus not stepped down to level 0.

7 Related and Future Work
Linearizability of contains in SC. Formal verification of linearizability of traversal-based search

structures in SC has been extensively studied. One of the key challenges is that the containsmethod

exhibits an external linearization point. A linearizability proof is usually done by identifying a point

in the execution of the operation where the effect of the operation appears to take effect. Typically,

the linearization point is an instruction in the operation, e.g., successful CAS in add of list-based

set. However, the linearization point of highly concurrent contains appears to be executed by a

concurrently running (external) operations, which requires complex and unintuitive arguments.

This has led to several proof techniques such as hindsight theory and prophecy variables.

The hindsight method [12, 35, 39] establishes the lemma of the form “if there existed a past

state that satisfied property 𝑝 and the current state satisfies 𝑞, then there must have existed an

intermediate state that satisfied 𝑜” [35]. For contains, this lemma tells us whether the item was in

the set at that intermediate state. Internally, hindsight reasoning works by recording the history of

state and maintaining the invariant on how the state may evolve. On the other hand, prophecy

variables [21, 30] help establish the linearization point directly in that method by providing the

means to scrutinize the future state. Patel et al. [44, 45] encoded the hindsight reasoning with

prophecy variable in Iris to verify log-structured merge (LSM) tree and lock-free skiplist.
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We believe that these proof techniques are not very useful for relaxed data structure implementa-

tions in RMC as they do not satisfy linearizability and their specification should track the history of

all operations. As such, the commit point of read events can be chosen relatively freely. For example,

a prover verifing a linearizable history specification [8, 43] can effectively defer committing a new

read event and instead place it earlier in the linearization order.

Reasoning about graph structures in SC. Xiong et al. [55] verified a lock-free skiplist. However,

they did not prove the contains function that has an external linearization point, which would

involve with reasoning about the data structure’s complex graph structure.

A prominent proof technique for search structures in SC is the edgeset framework [48], which

provides a uniform method for describing search structures as a graph with each edge labeled with

its edgeset. An edgeset of an edge 𝑒 is the set of keys such that a search for the key that arrived

at 𝑒.from will proceed to 𝑒.to. The set of keys that the node is responsible for, called keyset, can

be derived from the edgesets of its incoming and outgoing edges. The uniform abstraction of the

edgeset framework applies to various data structures such as linked lists and trees. This facilitates

proof reuse and automation [26, 45]. Proofs based on the edgeset framework often additionally

utilize the flow framework [27, 28], which enhances separation logics with local reasoning rules

for the graph properties defined with the edgeset framework.

However, the edgeset framework is not directly applicable to RMC, because it is based on the

assumption that distinct nodes have disjoint keysets. But RMC retains stale values, which lead to

multiple copies of the same key reachable from the root. Because of this, the keyset of a node is

not well-defined. Our solution to this problem is to focus on the edges, properties of which are

persistent. Specifically, we observe that the total order of events on each key can be derived from

the shadowed-by relation of the edges that contain the key.

Patel et al. [44] faced a similar problem in verification of multi-copy data structure such as

LSM trees in SC. To overcome this problem, they used logical timestamps to order the nodes

that contain the same key, which is analogous to our strategy of ordering containing edges of a

key by shadowing. However, shadowing is more general, handling higher degree of irregularity.

(1) Crucially, there is no globally agreed total order of events in RMC, which prohibits the use of

a single logical timestamp for ordering nodes. (2) Patel et al. assume that a stale copy of a key is

farther from the root than a newer copy, which makes search for a key identical to single-copy

data structure. This does not necessarily hold for stale copies in RMC. (3) Traversal to the same

key may take different path non-deterministically in RMC.

Madiot and Pottier [32] introduced the pointed-by assertion for reasoning about reachability and

heap space usage under garbage collection in separation logic in SC. This assertion is also used by

Jung et al. [18] to specify the read-copy-update (RCU) [33] memory management algorithm in SC.

The assertion differs from our pointed-by-edges assertion (§4.1) in that ours itself does not assert

unreachability—it just records history of all incoming edges. Also, our assertion, together with the

shadowed-by relation, provides the foundation for reasoning about view-reachability in RMC.

Verification of traversal inRMC. Tassarotti et al. [51]made a significant contribution to reasoning

about traversals in RMC by verifying single-writer linked list under RCU memory management.

The list supports non-blocking read operations. But the single-writer assumption makes the linked

list algorithm they verified significantly simpler than what we verified in this work. Also, they only

verified the memory safety of read operations: they do not specify what value the read operations

will end up reading. We believe this is partly because there was no mature methodology for giving

strong specification to RMC libraries at the time of publication. There have been several works on

strong specification in RMC since then [2, 5, 8, 46, 50]. However, to our knowledge, we are the first

to verify non-blocking search structures against a strong specification under RMC.
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Gammie et al. [14] verified a concurrent tracing garbage collector (GC) under the x86-TSO

memory model [47], which is a stronger (less relaxed) than the RC11 [29] model we assume in this

work. Verifying GC involves reasoning about reachability of objects, which in general becomes

more difficult under RMC as we observe in this work. However, reachability in x86-TSO is simpler

since the model is essentially an SC heap plus per-thread store buffers, which simply needs to

be added to the set of roots. Furthermore, important GC operations are done with CAS, which is

totally ordered across all threads in x86-TSO and thus limits relaxed behaviors. On the other hand,

in (view-based) RC11, we need to consider all stale edges and rule out the edges that are sufficiently

stale in the perspective of each thread.

Verification of data structures in RMC. Verification of data structures other than sets and maps

has been explored in prior research. Dang et al. [7] developed iRC11 and verified Rust’s atomic

reference counting (Arc) library. Mével and Jourdan [34] pioneered the use of logical atomicity

in RMC, verifying a concurrent bounded queue. Dang et al. [8] expanded upon these works by

refining specifications and verifying concurrent stacks, queues, and exchangers. Park et al. [43]

leveraged proof automation to enhance the scalability of verification.

Our specification and verification techniques are specifically designed for data structures with

lock-free traversals. As such, for data structures that do not involve lock-free traversals, our per-

key specification introduces unnecessary complexities to relate multiple keys (§3). For these data

structures, prior work already provides adequate solutions.

Recent work verifying the RCU concurrent reclamation algorithm [19] highlights the effectiveness

of our per-key specification for complex client verification. This work verifies an internal data

structure called a slot bag, a collection of slots each holding amemory address that will be deallocated.

The specification of the slot bag closely resembles our per-key linearizable history specification,

where the slot index acts as the key. Reasoning with this specification, combined with complex

synchronization analysis provided by SC fences, is a key part of the verification of RCU, as the slot

bag’s operations are pivotal for determining the safety of memory reclamations.

Future work. We formalized the shadowed-by relation, a key primitive for reasoning about reach-

ability in RMC, and demonstrated its utility by verifying lock-free search structures. We believe our

work lays the groundwork for further development. (1)We believe the shadowed-by relation can

be used to verify other types of concurrent search structures such as trees. (2)We aim to explore

adapting the edgeset and flow frameworks to RMC for systematic proof construction and reuse.

(3)We intend to investigate proof automation techniques within Rocq, such as Diaframe [37, 38] to

enhance the scalability of verification. Specifically, Rocq’s interactive proof checking performance

and the repetitive discharge of side conditions were major bottlenecks in our verification.

We envision that our work paves the way for verifying real-world implementations of concurrent

search structures, such as Java’s ConcurrentMap [40], and subsequently real-world software. We

anticipate that the core theories of the shadowed-by relation and view-reachability can be readily

applied with minor adjustments to the definition of containing edges to match the data structure.

However, we expect the following additional challenges. (1) Cyclic data structures: Some data

structures, such as doubly linked lists or certain binary search trees [1, 11], track not only the

successor but also the predecessor of each node. This introduces cycles in the graph, which are

currently not considered in the theory of the shadowed-by relation. (2) Atomics with SC orderings:

Many real-world concurrent data structure implementations for C/C++ rely on the SC access

mode for atomics. Although the shadowed-by relation does not depend on the memory ordering

of atomic instructions, current program logics for the C11 memory model, including GPS [53],

RSL [54], FSL [9, 10], and iRC11 [7, 8, 23], do not fully support atomic accesses with mixed orderings,

particularly when SC accesses are used alongside release-acquire or relaxed accesses.
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(a) Visualization of the priority queue.

Marked node is represented with an

X mark on the node. Dotted mark

and edges are written during the

removeMin operation that removes 10.
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(b) Linearization example of a per-key history of the key 10, repre-

sented as red dashed arrows. Events in the same group are sorted

by the wall-clock order of the commit point. The edge 𝑒5 is omitted

from the visualization due to space limit.

Fig. 18. An example of 1-level skiplist-based priority queue

A Verification of Skiplist-Based PriorityQueue
To showcase the broad applicability of the shadowed-by relation, we verify a skiplist-based lock-free

priority queue [16, §15.5]. This algorithm extends the standard skiplist (§6) by adding a boolean

flag in each node to indicate logical deletion. We highlight the adaptations required in the original

skiplist proof, specifically how causality reasoning now involves the boolean flag in addition to the

shadowed-by relation.

Algorithm. Fig. 18a illustrates the skiplist-based priority queue. Similar to the skiplist, it consists

of multiple lock-free sorted links at different levels, where new nodes are added from bottom to top,

and removals occur from top to bottom. A notable difference is that logical deletion of a node is

performed by setting a dedicated boolean flag on the node to true, rather than marking an outgoing

edge from the node. The two primary methods are outlined below:

add This method follows the same process as add in the skiplist, except in cases where the key is

already present. If a node with the target key is found, the method checks the node’s flag and

determines the failure of add (committing Contains) only if the flag is false.

removeMin This method traverses the bottom-level list until it finds an unmarked node, then

logically deletes the node by setting its flag to true. If successful, this becomes the commit point,

and then the node is physically removed following the same process as remove in the skiplist.

Verification. The proof strategy outlined in Fig. 7 for the skiplist (§4.2) remains largely applicable,

but a crucial difference arises due to logical deletion being performed by marking nodes instead of

edges. Fig. 18b illustrates this key difference in deriving a total order for the priority queue. Consider

the NoContains event in the second group, which is committed by traversing to 𝑒2 and reading true

from the boolean flag. A naive approach would yield a total order of Add→ NoContains→ . . . ,

which violates the sequential behavior of the priority queue. This issue stems from the possibility

that a thread may reach a stale edge 𝑒2 during traversal, which does not determine the existence of

the key 10 unlike in the original skiplist algorithm.

To address this, we introduce a strategy to establish a total order for per-key events related to

edges from all nodes sharing the same key. In the example of Fig. 18b, specifically for key 10, we

reorder these events such that Add and Contains (observing false from the boolean flag) precede
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Remove and NoContains (observing true from the boolean flag), as shown in the boxed region.

This ordering preserves causality. In particular, the NoContains event in the second group can be

placed after the Remove event in the third group, as a thread committing NoContains must have

read the mark written by another thread committing Remove.
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